
Taking a Turn on Perceptron Curve Fitting
Steven Bos (#1319671, steven@stevenbos.com)

Martijn Haak (#1345389, m.i.j.haak@student.tudelft.nl)

Sacha Panic(#1367803, a.s.panic-1@student.tudelft.nl)

[ABSTRACT] Neural networks have been a suitable candidate when it comes to curve fitting. But how exactly do the

different features of the curve influence the performance of a single layer neural network? We have looked at three types of

curves within the range [-1,1]. The first is a third order curve rotated around the origin, the second a sixth order curve

symmetric in the line x = 0 and the third is an asymmetric curve. All the features of the curve impact the performance or size

requirements of the neural network in one way or another, sometimes in intuitive ways, sometimes more subtly. Hence no

network will fit all situations.

1. INTRODUCTION

Using neural networks for function or curve fitting seems to

be mostly a scientific toy problem. On the other hand it has

been applied in practical situations, such as stock market

predictions [1]. In fact, neural networks seem to be fairly

good at it, as this paper will show. Apart from requiring

sometimes large amounts of training data and some tweaking,

the only thing neural networks they seem to have going

against them is the fuzziness of the solution. That is, it is often,

if not always, hard to tell why it works.

This paper will outline the experiment and its results, where

we try to show several aspects of a neural network, and how

they influence its performance. This include varying the

complexity of the curve to fit, symmetry of the curve,

sampling rate of the curve and interpolating and extrapolating

data missing from the training dataset.

1-1. TOOLS

We experimented with both Java NNS, Neuro Solutions 5

(with interactive book) and MATLAB (with the Neural

Network Toolbox) in order to see which tool best fit our

requirements and experience. MATLAB soon showed to be a

better fit, as it proved to be more flexible in many ways.

MATLAB allows easier importing of data from external

sources as well as data generation. It also performed better in

the area of (ease of) configurability, even though all tools

allow extensive tweaking of the neural network.

Attempts to make their features accessible to novices have

failed for all applications, but those familiar with MATLAB,

and that applies to many scientists, will have a significant

advantage when it comes to understanding the interface.

MATLAB even provides different modes of interaction,

ranging from a click’n’go GUI targeted specifically to

function fitting, to the command line interface commands

which should be familiar to use for most MATLAB adepts.

And MATLAB’s features with regards to visual presentation are

hard to match.

MATLAB also beats Java NNS when it comes to the price tag,

albeit in a negative way. Of course the extra cash gets you more

than just a Neural Network simulation kit, and the toolkit comes

with some very good documentation, but unfortunately all that

money doesn’t buy you a bug-free to play around with.

2. MODEL

For this experiment, three polynomials have been taken of varying

degrees, to see how the neural networks would tackle them. A

great benefit of these functions is that each input value maps to

single output value. We’ve restricted our experiment to this

polynomials within the interval [-1,1]. Each of the polynomials

have (local) extremes within the [-1,1] interval, and vary in

symmetry. They are displayed in figure 0.

 f(x) g(x)

h(x)

Figure 0 – The curves used for the experiments.

2

10
14

50
16

246

3

)(14)(4632)(

144632)(

48)(

−+−−=

+−=

+=

xxxxh

xxxxg

xxxf

The sampling rate is changed for one of the experiments, but

most experiments are performed with the curves samples at 50

uniformly distributed points (along the x-axis) within the

interval [-1,1] inclusive. The neural network is then tested at

200 sample points, also uniformly distributed along the same

interval.

3. SET-UP OF EXPERIMENT

As described in the introduction, MATLAB’s Neural Network

Toolbox has been the tool of choice for carrying out the

experiments. Figure 1 shows the set-up of our network. The

hidden layer contains n neurons, with n varying for the

different experiments, and a single neuron in the output layer.

Figure 1 – Set-up of the experiment: The input layer is

connected to all neurons in the hidden layer. The hidden layer

uses a tangent sigmoid transfer function. There is only one

neuron in the output layer, which uses a pure linear transfer

function.

For our experiment, most of the network’s variables are kept

the same and only the number of neurons in the hidden layer is

varied. These parameters are listed in the table 1.

Parameters

Network type Feedforward

Neurons

1 input layer (size 1)

1 hidden layer (size n)

1 output layer (size 1)

Training algorithm Levenberg-Marquardt

Adjustment algorithm Gradient descent

Performance measure Mean Squared Error

Transfer function

 Hidden layer

 Output layer

Hyperbolic tangent

Linear

Table 1 – Configuration of the network used in this

experiment. Only the amount of neurons in the hidden layer is

varied for the experiments.

The training sets were generated using MATLAB. The base

dataset consists of n values uniformly distributed between -1

and 1 inclusive. Next, datasets were generated with carefully

chosen gaps. This way we can see how well the networks will still

be able to generate the original function when interpolating and

extrapolating. The test and validation dataset are randomly

extracted from the input dataset, each taking up about 10% of the

input samples.

4. RESULTS

The following sections outline the results for each of the sub-

experiments.

4-1. COMPLEXITY

It may be little surprising that the complexity of polynomial

directly affects the requirements of the network. As expected,

higher order polynomials require a larger hidden layer.

Figure 2 shows the results of the trained networks with differently

sized hidden layers.

 (a) (b)

 (c) (d)

Figure 2 – Approximation of curve with insufficiently large hidden

layers: third order curve approximated with 2 neurons (a) and 1

neuron (b); sixth order curve approximated with 5 neurons (c) and

3 neurons (d).

More surprisingly, only a few neurons are required in the hidden

layer to accomplish near-exact approximation. Three and six

neurons in the hidden layer suffice for the third order and sixth

order polynomial respectively, which are both accurate up to three

decimal points.

4-2. SYMMETRY

Intuitively it may make sense, but it is still a little surprising that

the symmetry of the curve affects the network’s performance. The

approximation of a symmetric curve with the same complexity

(that is, the same degree of polynomial, and the same number of

extremes) is more accurate. In fact, where 6 neurons were able to

create an almost exact approximation of the curve, as shown in the

previous paragraph, the same preciseness of the asymmetric

curve requires 8 or more neurons, although figure 3 below

shows that both 6 and 7 neurons are able to do an acceptable

job.

 (a) (b)

Figure 3 – Approximation of an asymmetric curve using 6

neurons (a) and 7 neurons (b).

Interestingly, even with a large number of neurons in the

hidden layer, the network seems to come to an (locally)

optimal solution much faster for the asymmetric curve. The

network almost without exception takes up all 1000 epochs

(which is the set limit) for fitting itself to the symmetric curve,

while the asymmetric curve rarely requires more than 100

epochs.

4-3. SAMPLE RATE

As long as we are concerned with uniformly samples curves, it

appears that the sample rate does not have much influence on

the performance network. We tested at 30, 50 and 100

samples. Generally, the higher the sample rate, the longer the

training algorithm attempts to further tweak the curve.

 (a) (b)

 (c) (d)

Figure 4 – Approximation using 30 sample points with 6

neurons (a), 7 neurons (b), and 8 neurons (fragment, c). The

error for sampling at 30 and at 100 points is also shown (d).

The experiment showed that feeding about 50 unique, uniformly

distributed samples for the symmetric 6th order curve causes the

algorithm to take anywhere between 25 and 40 epochs, but if the

number of samples is doubled, the number of epochs greatly

exceeds 1000. Just as in the first experiment, this could be done

with a hidden layer of 6 neurons, regardless of the sampling rate.

There is a caveat, though, as figure 4 shows. If the number of

samples drops below a certain threshold, for the 6
th
 degree

symmetrical polynomial this threshold lies somewhere between 20

and 30, the network will not have enough to data to be able to

properly generalize the curve.

The issue of sampling rate is related to extrapolation, as discussed

in the next section, because sampling at a lower sampling rate

causes more gaps, and may miss certain features of the curve

altogether.

 (a) (b)

 (c) (d)

(e)

Figure 5 – Extrapolating a sixth degree symmetric curve; missing

the middle section from the input data (a, b), missing parts at one

end of the data (c,d), and the behavior of the curve on a larger

range than the [-1,1] used for training (e).

This is worsened further by the fact that 20% of the samples were

used for testing and validation. Creating separate sets for testing

and validation improved performance in two ways. First of all,

removing data points from the original data crippled the uniform

nature of the input. Creating an extra data set for testing and

validation ensures that this crippling will not occur. Secondly, and

iterations

e
rr
o
r

more obviously, all of the input data can now be used for

training, and none of it has to be sacrificed for.

Note that we have only shown the results for the symmetric 6
th

order curve. Behavior changes are more dramatic when

symmetry (or the lack thereof) comes into play. The effects on

the asymmetric curve of changes in sample rate, especially at

the lower rates, were far more erratic and caused us to have to

discard these measurements. To get meaningful results, this

particular part of the experiment would have to be redone with

a separate validation and test set, and larger input sets.

4-4. EXTRAPOLATION

The results for the asymmetric and symmetric curves of the

same order are quite different. This was also the case for the

sample rate, and given the similar nature of the problem, this

could be expected. Cutting half the samples (e.g. the upper

25) causes the curve fitting to go completely astray for the

asymmetric case. This is not the case for the symmetric curve,

as the results show.

Figure 5 shows the resulting curves for different

extrapolations of the symmetric curve. Again, the curve was

fitted using the minimum of six neurons determined in the first

paragraph of this section. If the middle 10 points (out of 50)

are omitted, there really doesn’t seem to be any problem.

Omitting the upper 10 points causes problems, probably

because it just misses the local minimum, and there is nothing

to hint the neural network that it should be going back up

(figure 5c). Omitting half of the points on one site makes

matter even worse, as the downward slope just before the end

of the data causes the network to continue this downward

trend, rather than going back up (the fact that exactly 50 points

were taken will not have helped, as the (0,0) point is not

sampled, meaning the last sample still has a derivative f’(x) to

be less than 0.

Looking at the behavior of the network completely outside the

trained [-1,1] range, we see that even though neural networks

seem to have less trouble with symmetric curves, this

symmetry is not retained outside of the trained area.

Figure 6 shows the results for the asymmetric sixth degree

curve. Performance is sometimes equal to, but usually worse

than for a symmetric curve. One thing that is obviously

different is the fact that the effects are much less local, and the

curve is effected even in areas still available in the source.

This probably also explains why fewer neurons had more

trouble with the asymmetric curve at the edges, as shown in

paragraph 4.2.

 (a) (b)

 (c) (d)

Figure 6 – Extrapolating a sixth degree asymmetric curve; missing

the middle section from the input data (a),missing parts from the

upper (c) and lower (d) end of the data, and the behavior of the

curve on a larger range than the [-1,1] used for training (b).

5. CONCLUSION AND DISCUSSION

The first thing that occurs to the novice neural network enthusiast

is the low number of neurons that is required for a decent

simulation of a curve. One may conclude that the properties of the

curve directly influence the requirements on the network. As such,

one network will not fit all situations, and careful tweaking and

experimentation is required to find a network that fits a particular

situation best.

When running the experiments, the outcome wasn’t exactly the

same every time we ran it
†
. This may be partly contributed to

random factors in the training algorithm. Another important issue

is that samples are randomly extracted from the original dataset, to

be used as test and validation data. This causes to the dataset used

for training to consist of a different subset of the original input

dataset each time it is run.

The set-up of the experiment was as such that only one thing was

changed at a time, to isolate their effects. This, of course,

overlooks the situation where two variables are dependent,

although we believe that if there are any differences, that they will

be small. Thus, our conclusions should hold.

The next logical step would be to redo all experiments in a multi

layer perceptron feed forward network. Expected is that the total

amount of neurons in the whole network can be decreased, whilst

keeping equal or better performance.

† Apart from the causes described in the text, MATLAB would sometimes

cause erroneous training due to a bug in the Neural Network Toolkit,

causing it to accept its initial weights and biases. These runs have been

removed from the experiment.

REFERENCES

[1] Goldengem

 http://www.goldengem.co.uk

[2] Roel Smits and Louis Ten Bosch, “The single-layer

perceptron as a model of human categorisation

behaviour”, Speech Hearing and Language: work in

progress 1996, Volume 9, 1996

 http://www.phon.ucl.ac.uk/home/shl9/contents.htm

