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[ABSTRACT] Neural networks have been a suitable candidate when it comes to curve fitting.  But how exactly do the 

different features of the curve influence the performance of a single layer neural network?  We have looked at three types of 

curves within the range [-1,1].  The first is a third order curve rotated around the origin, the second a sixth order curve 

symmetric in the line x = 0 and the third is an asymmetric curve.  All the features of the curve impact the performance or size 

requirements of the neural network in one way or another, sometimes in intuitive ways, sometimes more subtly.  Hence no 

network will fit all situations. 

 

1. INTRODUCTION 

Using neural networks for function or curve fitting seems to 

be mostly a scientific toy problem.  On the other hand it has 

been applied in practical situations, such as stock market 

predictions [1].  In fact, neural networks seem to be fairly 

good at it, as this paper will show.  Apart from requiring 

sometimes large amounts of training data and some tweaking, 

the only thing neural networks they seem to have going 

against them is the fuzziness of the solution. That is, it is often, 

if not always, hard to tell why it works. 

 

This paper will outline the experiment and its results, where 

we try to show several aspects of a neural network, and how 

they influence its performance.  This include varying the 

complexity of the curve to fit, symmetry of the curve, 

sampling rate of the curve and interpolating and extrapolating 

data missing from the training dataset. 

1-1. TOOLS 

We experimented with both Java NNS, Neuro Solutions 5 

(with interactive book) and MATLAB (with the Neural 

Network Toolbox) in order to see which tool best fit our 

requirements and experience.  MATLAB soon showed to be a 

better fit, as it proved to be more flexible in many ways. 

MATLAB allows easier importing of data from external 

sources as well as data generation. It also performed better in 

the area of (ease of) configurability, even though all tools 

allow extensive tweaking of the neural network. 

 

Attempts to make their features accessible to novices have 

failed for all applications, but those familiar with MATLAB, 

and that applies to many scientists, will have a significant 

advantage when it comes to understanding the interface.  

MATLAB even provides different modes of interaction, 

ranging from a click’n’go GUI targeted specifically to 

function fitting, to the command line interface commands 

which should be familiar to use for most MATLAB adepts. 

And MATLAB’s features with regards to visual presentation are 

hard to match. 

 

MATLAB also beats Java NNS when it comes to the price tag, 

albeit in a negative way.  Of course the extra cash gets you more 

than just a Neural Network simulation kit, and the toolkit comes 

with some very good documentation, but unfortunately all that 

money doesn’t buy you a bug-free to play around with. 

2. MODEL 

For this experiment, three polynomials have been taken of varying 

degrees, to see how the neural networks would tackle them.  A 

great benefit of these functions is that each input value maps to 

single output value. We’ve restricted our experiment to this 

polynomials within the interval [-1,1].  Each of the polynomials 

have (local) extremes within the [-1,1] interval, and vary in 

symmetry.  They are displayed in figure 0. 

 

           
                         f(x)                                          g(x) 

 
h(x) 

 

Figure 0 – The curves used for the experiments. 
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The sampling rate is changed for one of the experiments, but 

most experiments are performed with the curves samples at 50 

uniformly distributed points (along the x-axis) within the 

interval [-1,1] inclusive.  The neural network is then tested at 

200 sample points, also uniformly distributed along the same 

interval. 

3. SET-UP OF EXPERIMENT 

As described in the introduction, MATLAB’s Neural Network 

Toolbox has been the tool of choice for carrying out the 

experiments.  Figure 1 shows the set-up of our network.  The 

hidden layer contains n neurons, with n varying for the 

different experiments, and a single neuron in the output layer. 

 

 
 

Figure 1 – Set-up of the experiment: The input layer is 

connected to all neurons in the hidden layer.  The hidden layer 

uses a tangent sigmoid transfer function.  There is only one 

neuron in the output layer, which uses a pure linear transfer 

function. 

 

For our experiment, most of the network’s variables are kept 

the same and only the number of neurons in the hidden layer is 

varied.  These parameters are listed in the table 1. 

 

Parameters  

Network type Feedforward 

Neurons 

 

 

1 input layer (size 1) 

1 hidden layer (size n) 

1 output layer (size 1) 

Training algorithm Levenberg-Marquardt 

Adjustment algorithm Gradient descent 

Performance measure Mean Squared Error 

Transfer function 

 Hidden layer 

 Output layer 

 

Hyperbolic tangent 

Linear 

 

Table 1 – Configuration of the network used in this 

experiment.  Only the amount of neurons in the hidden layer is 

varied for the experiments. 

 

The training sets were generated using MATLAB.  The base 

dataset consists of n values uniformly distributed between -1 

and 1 inclusive.  Next, datasets were generated with carefully 

chosen gaps.  This way we can see how well the networks will still 

be able to generate the original function when interpolating and 

extrapolating.  The test and validation dataset are randomly 

extracted from the input dataset, each taking up about 10% of the 

input samples. 

4. RESULTS 

The following sections outline the results for each of the sub-

experiments. 

4-1. COMPLEXITY 

It may be little surprising that the complexity of polynomial 

directly affects the requirements of the network.  As expected, 

higher order polynomials require a larger hidden layer.    

Figure 2 shows the results of the trained networks with differently 

sized hidden layers. 

 

          
                          (a)                                           (b) 

          
                          (c)                                           (d) 

 

Figure 2 – Approximation of curve with insufficiently large hidden 

layers: third order curve approximated with 2 neurons (a) and 1 

neuron (b); sixth order curve approximated with 5 neurons (c) and 

3 neurons (d). 

 

More surprisingly, only a few neurons are required in the hidden 

layer to accomplish near-exact approximation.  Three and six 

neurons in the hidden layer suffice for the third order and sixth 

order polynomial respectively, which are both accurate up to three 

decimal points. 

4-2. SYMMETRY 

Intuitively it may make sense, but it is still a little surprising that 

the symmetry of the curve affects the network’s performance.  The 

approximation of a symmetric curve with the same complexity 

(that is, the same degree of polynomial, and the same number of 

extremes) is more accurate.  In fact, where 6 neurons were able to 

create an almost exact approximation of the curve, as shown in the 



previous paragraph, the same preciseness of the asymmetric 

curve requires 8 or more neurons, although figure 3 below 

shows that both 6 and 7 neurons are able to do an acceptable 

job. 

 

           
                          (a)                                           (b) 

 

Figure 3 – Approximation of an asymmetric curve using 6 

neurons (a) and 7 neurons (b). 

 

Interestingly, even with a large number of neurons in the 

hidden layer, the network seems to come to an (locally) 

optimal solution much faster for the asymmetric curve.  The 

network almost without exception takes up all 1000 epochs 

(which is the set limit) for fitting itself to the symmetric curve, 

while the asymmetric curve rarely requires more than 100 

epochs. 

4-3. SAMPLE RATE 

As long as we are concerned with uniformly samples curves, it 

appears that the sample rate does not have much influence on 

the performance network.  We tested at 30, 50 and 100 

samples. Generally, the higher the sample rate, the longer the 

training algorithm attempts to further tweak the curve. 

 

           
                          (a)                                           (b) 

           
                          (c)                                           (d) 

 
Figure 4 – Approximation using 30 sample points with 6 

neurons (a), 7 neurons (b), and 8 neurons (fragment, c).  The 

error for sampling at 30 and at 100 points is also shown (d). 

 

The experiment showed that feeding about 50 unique, uniformly 

distributed samples for the symmetric 6th order curve causes the 

algorithm to take anywhere between 25 and 40 epochs, but if the 

number of samples is doubled, the number of epochs greatly 

exceeds 1000.  Just as in the first experiment, this could be done 

with a hidden layer of 6 neurons, regardless of the sampling rate. 

 

There is a caveat, though, as figure 4 shows.  If the number of 

samples drops below a certain threshold, for the 6
th
 degree 

symmetrical polynomial this threshold lies somewhere between 20 

and 30, the network will not have enough to data to be able to 

properly generalize the curve. 

 

The issue of sampling rate is related to extrapolation, as discussed 

in the next section, because sampling at a lower sampling rate 

causes more gaps, and may miss certain features of the curve 

altogether. 

 

           
                          (a)                                           (b) 

           
                          (c)                                           (d) 

 
(e) 

Figure 5 – Extrapolating a sixth degree symmetric curve; missing 

the middle section from the input data (a, b), missing parts at one 

end of the data (c,d), and the behavior of the curve on a larger 

range than the [-1,1] used for training (e). 

 

This is worsened further by the fact that 20% of the samples were 

used for testing and validation.  Creating separate sets for testing 

and validation improved performance in two ways.  First of all, 

removing data points from the original data crippled the uniform 

nature of the input.  Creating an extra data set for testing and 

validation ensures that this crippling will not occur.  Secondly, and 

iterations 

e
rr
o
r 



more obviously, all of the input data can now be used for 

training, and none of it has to be sacrificed for. 

 

Note that we have only shown the results for the symmetric 6
th
 

order curve.  Behavior changes are more dramatic when 

symmetry (or the lack thereof) comes into play. The effects on 

the asymmetric curve of changes in sample rate, especially at 

the lower rates, were far more erratic and caused us to have to 

discard these measurements.  To get meaningful results, this 

particular part of the experiment would have to be redone with 

a separate validation and test set, and larger input sets. 

4-4. EXTRAPOLATION 

The results for the asymmetric and symmetric curves of the 

same order are quite different.  This was also the case for the 

sample rate, and given the similar nature of the problem, this 

could be expected.  Cutting half the samples (e.g. the upper 

25) causes the curve fitting to go completely astray for the 

asymmetric case.  This is not the case for the symmetric curve, 

as the results show. 

 

Figure 5 shows the resulting curves for different 

extrapolations of the symmetric curve.  Again, the curve was 

fitted using the minimum of six neurons determined in the first 

paragraph of this section.  If the middle 10 points (out of 50) 

are omitted, there really doesn’t seem to be any problem. 

 

Omitting the upper 10 points causes problems, probably 

because it just misses the local minimum, and there is nothing 

to hint the neural network that it should be going back up 

(figure 5c).  Omitting half of the points on one site makes 

matter even worse, as the downward slope just before the end 

of the data causes the network to continue this downward 

trend, rather than going back up (the fact that exactly 50 points 

were taken will not have helped, as the (0,0) point is not 

sampled, meaning the last sample still has a derivative f’(x) to 

be less than 0. 

 

Looking at the behavior of the network completely outside the 

trained [-1,1] range, we see that even though neural networks 

seem to have less trouble with symmetric curves, this 

symmetry is not retained outside of the trained area. 

 

Figure 6 shows the results for the asymmetric sixth degree 

curve.  Performance is sometimes equal to, but usually worse 

than for a symmetric curve.  One thing that is obviously 

different is the fact that the effects are much less local, and the 

curve is effected even in areas still available in the source.  

This probably also explains why fewer neurons had more 

trouble with the asymmetric curve at the edges, as shown in 

paragraph 4.2. 

 

           
                          (a)                                           (b) 

           
                          (c)                                           (d) 

 

Figure 6 – Extrapolating a sixth degree asymmetric curve; missing 

the middle section from the input data (a),missing parts from the 

upper (c) and lower (d)  end of the data, and the behavior of the 

curve on a larger range than the [-1,1] used for training (b). 

5. CONCLUSION AND DISCUSSION 

The first thing that occurs to the novice neural network enthusiast 

is the low number of neurons that is required for a decent 

simulation of a curve.  One may conclude that the properties of the 

curve directly influence the requirements on the network.  As such, 

one network will not fit all situations, and careful tweaking and 

experimentation is required to find a network that fits a particular 

situation best. 

 

When running the experiments, the outcome wasn’t exactly the 

same every time we ran it
†
.  This may be partly contributed to 

random factors in the training algorithm.  Another important issue 

is that samples are randomly extracted from the original dataset, to 

be used as test and validation data.  This causes to the dataset used 

for training to consist of a different subset of the original input 

dataset each time it is run. 

 

The set-up of the experiment was as such that only one thing was 

changed at a time, to isolate their effects.  This, of course, 

overlooks the situation where two variables are dependent, 

although we believe that if there are any differences, that they will 

be small.  Thus, our conclusions should hold. 

 

The next logical step would be to redo all experiments in a multi 

layer perceptron feed forward network. Expected is that the total 

amount of neurons in the whole network can be decreased, whilst 

keeping equal or better performance.  

                                                           
† Apart from the causes described in the text, MATLAB would sometimes 

cause erroneous training due to a bug in the Neural Network Toolkit, 

causing it to accept its initial weights and biases.  These runs have been 

removed from the experiment. 
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