
Using Neural Networks for model based predictive control
M. Haak, S.Bos, S.Panic

Department of Man Machine Interaction
Delft University of Technology

Delft, NL.
.Abstract – In this report the use of neural networks for
model based predictive control is investigated. In a
simulated environment a neural network was trained
to predict and control an electrical Trolley on a
horizontal surface. The backpropagation of error
algorithm was used to train the network. In each of the
37 simulations that were performed, the focus was on
some variables that are of particular interest. These
variables included the total number of neurons in the
network, the number of hidden layers, the number of
neurons per layer, the learning rate, the momentum,
the number of input parameters that the Trolley
provides, and the length of the Tapped Delay Line.
Under all investigated configurations the network
seemed reasonably capable of learning to predict and
control the Trolley plant. There appears to be an
optimal trade-off between overall performance and
computational resources that is guided by the problem
itself instead of an intelligently designed solution.

Index Terms – Neural networks, control systems,
artificial intelligence.

I. INTRODUCTION

This report investigates the use of neural networks as
predictors of the behavior of a dynamic system. The neural
network is used in a model based prediction control
algorithm. In a simulated environment the neural network
must manipulate the acceleration of a mechanical Trolley.
Different configurations of neural networks will be
evaluated on their ability to make this simulated Trolley
stop at a predetermined location.

To perform this investigation an experiment has been
designed and executed. The design and the results will be
presented and discussed in the remaining sections of this
report. Before clarifying the problem statement and the
experimental approach, the remainder of this section
provides a brief introduction to the model based predictive
control and back propagation algorithms.

A Model based predictive control

Model based predictive control is an approach to
controlling a dynamical system. Based on the perceived
causal relationships between the input and output or state
of a system, a model can be constructed. This so called
plant can be used to predict the future state of a dynamic
system, while it is under a varying rate of control.

.

Different models for plants that can be used have been
identified in the literature. A general input-output model
using a discrete equation has been described by Krijgsman
(Jarmulak, 1994). The difference between the models can
be whether they make use of prior knowledge about the
system or not, or if they take external factors into account.
Declerq and Keyser described the prediction model as
being the neural model plus a noise model, adding some
white noise to the equation (Declerq and Keyser, 1996).

The neural model can be used as a base for a predictor
for the dynamic behavior of the system. This neural net
based predictor is used to control the system state. The
model is used to make predictions about the future state of
the system, in order to control the dynamic processes. As
with the models, there are different types of neural network
based predictors. Declerq and Keyser compared the
performance of feedforward, radial based and Elman
neural networks (Declerq and Keyser, 1996). They
conclude that the main problem with the performance is
the validity of the neural predictor itself. They distinguish
'emulators' from 'predictors', with the former being more
faithful general approximations while the latter only
approximates a system with regards to a limited prediction
horizon and control signal. Although the feedforward
neural net did not have the shortest training time, it has a
better extrapolation property and requires less neurons than
the other two.

B The backpropagation learning algorithm

Backpropagation is a form of supervised learning to
train MultiLayer Neural Networks (MLNNs). It requires a
feed-forward perceptron neural network architecture. It
was first explored in 1969 by Bryson and Ho in their paper
“Applied optimal control” (Bryson and Ho, 1969). Initially
it did not gain any recognition and it was not until the mid
80s that it was rediscovered by Rumelhart et. al. before this
technique was valued.

The backpropagation algorithm requires a training set
of input and output pairs. This makes that the algorithm is
not suitable for all problems (McCollum, 2003), especially
those that can’t easily be translated into an input/output
pair. Applications of the technique are mostly found in the
field of pattern recognition.

The problem of training MLNNs compared to single
layer NNs is in the hidden layers. Since the desired output
per node in these layers cannot be determined, algorithms
like the delta rule (the training rule for single layer NNs)
doesn’t work for the hidden layers. The error per node is
calculated via the formula

1

Errornode = Outputdesired – Input.

This formula requires the output to be measured, which
for hidden layers cannot be done. The backpropagation
algorithm solves this problem by assigning desired outputs
to nodes in the hidden layer and finally train the NN
(change the weights) using some training rule. The full
algorithm consists of three steps.

• First calculate the error for the output nodes in the
output layer in a feed forward fashion (this is
possible because the desired output are fixed in
the training input/output pairs)

• Then propagate the error in the output layer over
the nodes in the hidden layer, in a backward
fashion (hence the name backwards propagation).
This error is a weighted sum of the connected
nodes. The actual output for the hidden nodes,
together with the propagated error, result in a
desired output for the hidden nodes.

• Finally the weights for all of the links are
updated. These weights represent the ‘knowledge’
of the NN, but the back propagation algorithm
also uses the weights to describe the “blame” or
contribution to the error. The weights are updated
by some training rule in a way to minimize the
propagated error.

 Fig. 1: Backpropagation of errors is represented
by the dashed arrows that propagate the signal
error from the output neurons back to the input
neuron, while adjusting the weight matrices so that
the propagated error is minimized

The most interesting part of the algorithm happens in
the third phase. Choosing a suitable training rule that
modifies these weights depends on the problem. We
discuss here the generalized delta rule, which, unlike the
original delta rule, is it able to deal with other activation
functions besides the basic linear one. It is the most
commonly used training rule for backpropagation and
suitable for many classification problems. This rule is also
from a mathematical point of view very sound. The

generalized delta rule is a gradient descent learning rule,
effectively meaning it iteratively finds weights in such a
way that the propagated error per node (local error) is
minimized (Negnevitsky, 2001).

Backpropogation is an iterative process, continuingly
decreasing the mean squared error (MSE). The MSE will
eventually converge below some pre-defined point. At this
point the weights have been configured in such a way that
the network has “learned” a suitable solution. It will never
learn the exact solution, it only approximates it. In some
cases it will never converge below the pre-defined point,
usually indicating that with the current configuration a
solution to the described problem can not be learned.
Sometimes instead of MSE the root of the MSE is used,
called the RMS error.

To speed up the learning process the learning rate
parameter can be modified. The value of this variable is
between 0 and 1 and is usually very small (a common
value is 0.05). The backpropagation algorithm is based on
small changes being made to the weights of the input at
each step. If these changes are too large the performance
may 'bounce around' in a counter productive fashion. In
such cases the learning rate can be reduced, but at the cost
of requiring more steps to reach the stopping criterion
(Wilson, 2008). It is common to change the learning rate
adaptively, based on the MSE. As such, when the MSE is
decreasing for several epochs the learning rate is increased,
and when the MSE is increasing and decreasing
(oscillating behaviour) for several epochs the rate is
decreased. In our study we fix the learning rate and
evaluate the results for three values. To smoothen the MSE
descent the generalized delta rule can be enhanced with a
momentum term. Now every iteration a small part of the
old weight change is added to the normal weight change.
According to Watrous and Jacobs this has a stabilising
effect, and the total error converges more steady (Watrous
1987, Jacobs, 1988).

II. PROBLEM STATEMENT AND EVALUATION

This experiment aims to investigate if neural networks
can be used as an identifier and controller in model based
predictive control. The training and performance results of
a number of preconfigured networks will be collected
during an experiment, which can be compared and
contrasted in order to analyze the performance of neural
networks as identifiers and controllers of second order
dynamic systems.

III. EXPERIMENTAL APPROACH

This experiment trains a neural network as an identifier
and controller of a simulated electrical Trolley. The
experiments are set up so that a number of variables of
interest can be investigated. The recorded results of the

2

experiment will be further analyzed in the next chapter of
this report.

A The Trolley as a simulated dynamic system

An electrically driven Trolley on a horizontal surface is
selected as the dynamic system to use for the experiment.
NeuroControl Workbench, the software package used to
model and simulate the Trolley, offers two variations of
this system. One version has the position of the Trolley as
a single output, while the other version also outputs the
speed of the Trolley. This simulation has two parameters,
gain k and response time . The gain is a proportional valueτ
that shows the relationship between the magnitude of the
input and output signals of the system. The response time
determines how fast the Trolley reacts to changes in the
input signal (Jarmulak, 1994).

The Trolley is an interesting system for predictive
control, as its response to a change in the input is not
acute. Therefore stopping a trolley in time requires
"knowledge" of how the trolley will respond with regards
to change in the input. Telling the trolley to stop just as it
reaches the desired end point, the trolley will overshoot,
and corrective action is necessary. These repeated
corrections cause an oscillation around the end point.

B Experimental environment

To model the Trolley for our research, we used the
NeuroControl Workbench (NCWB) software package,
developed by Jacek Jarmulak (Jarmulak, 1994). It uses
plants to simulate different systems which can be trained
using neural control. The notion of a Plants is a familiar
one within the field of neural control. A Plant is a system
where input and output are causally related. On top of
that, a plant keeps an internal state, usually affecting this
relation.

NCWB provides several pre-programmed plants,
alongside two user definable plants. Among these plants
are only two relevant to this paper, namely both Trolley
plants. They differ in that one only has the current location
as an input, while the other has both location and speed as
inputs. How this affects the performance is discussed later
in this paper.

After selecting the Trolley and configuring its basic
set-up (gain k and response time) the plant is ready forτ
use. This still leaves the configuration of the neural
network. NCWB provides a limited configurability of the
network and its inputs. Networks can be configured to use
past positions instead of just the latest location. The
network itself uses a back propagation algorithm, has a
maximum of three hidden layers each consisting of a user
defined number of neurons, and can only further be
tweaked through learn rate and momentum. The effect of
these variables on the performance is discussed in a later
chapter.

C Experimental procedure

Within the NCWB program a new simulation is
initialized. This simulation is based on the Trolley plant,
with a gain k=0.45 and response time τ=0.05. A neural
network is configured with different combinations of the
variables of interest that are mentioned in the next section.
A trainings set of 50 elements is generated, and the
learning algorithm is set to run for a maximum of 30.000
epochs. With these settings a simulation is executed and a
performance graph is recorded for further analysis.

D Variables of interest

The neural network that is used in the simulation has a
number of variables that are of particular interest. These
variables are: the total number of neurons in the network,
the number of hidden layers, the number of neurons per
layer, the learning rate, the momentum, the number of
input parameters that the Trolley provides, and the length
of the Tapped Delay Line (TDL)1.

Table I and II list the different combinations of
variables with which the experiment has been repeated.
The resulting graphs of 37 different simulations have been
recorded for further analysis.

TABLE I
THE AMOUNT OF SIMULATED NEURONS AND THEIR DISTRIBUTION ACROSS THE

HIDDEN LAYERS OF THE NEURAL NETWORK. CONFIGURATION 1 IS THE BASELINE
CONFIGURATION

Neurons on layer Neurons on layer

Config. #1 #2 #3 Config. #1 #2 #3

1 5 0 0 5 5 5 0

2 2 0 0 6 5 5 5

3 1 0 0 7 5 10 5

4 10 0 0 8 2 2 0

1A tapped delay line (TDL) is a delay line with at least one
``tap''. A delay-line tap extracts a signal output from
somewhere within the delay line, optionally scales it, and
usually is summed with other taps to construct the delay
line signal.

3

Fig. 2: An electrically driven Trolley on a horizontal
surface (Jarmulak, 1994)

TABLE II
SOME NEURAL NETWORK CONFIGURATIONS WERE REPEATEDLY SIMULATED WITH

VARIATIONS TO ONE OF THESE VARIABLES. VALUES IN THE COLUMN LABELED #1 ARE
PART OF THE BASELINE CONFIGURATION

#1 #2 #3

Learning rate 0.1* 0.05 0.01

Momentum 0.9* 0.5 0.01

Tapped Delay Line 1* 2 3

Trolley Plant inputs 1* 2

E Comparison with a baseline configuration

As a baseline for further comparison, Configuration 1 from
Table I has been chosen. The learning rate of 0.1,
momentum of 0.9 and TDL length of 1 were chosen as
default values. This baseline configuration uses the
variation of the Trolley system that provides a single input
parameter, the position of the Trolley. The performance
graph shown in Fig. 3 indicates that most of the networks
adaptation takes place in the first 100 epochs. During the
remaining 29.900 epochs the error gradient continues to
converge to, but never actually reaches a minimum value.
This behavior appears to continue when the network is
trained with more epochs.

In the next section of this report some of the more
interesting results from the different test runs will be
presented.

IV RESULTS

In total 37 simulations have been performed and
recorded with the Trolley plant in NCWB. To investigate
each of the mentioned variables of interest, the recorded
error graphs of selected network configurations are
compared and contrasted. This is done by discussing a
single graph that shows multiple RMS error curves of
interest.

A Varying the total number of neurons

The graphs in Fig. 4 show the training results for a
single layer network with n=1,2,5 and 10 neurons. This
corresponds to Configurations 1 to 4 in Table I. Lowering
the number of neurons from the baseline of 5 increases the
RMS error, with n=2 giving the worst performance. The
increase of neurons from 5 to 10 does not seem to have
such a significant impact on the RMS error. This suggests
that there exists an optimal amount of neurons for which
the network is still capable of performing the computations
while minimizing the RMS.

B Varying the distribution of neurons across hidden
layers

The graphs in Fig. 5 show the training results for a
network with 1, 2 and 3 layers. When increasing the
number of layers while keeping the total number of
neurons equal, the resulting network performs about
equally well after 250 epochs (l=1 and l=2). The curve for
the RMS error is also more monotonous than with a single
layer. However when yet another layer is added, the
resulting graph (l=3) indicates that the network has more
trouble with adjusting its performance.

4

Fig. 4: Varying the number of neurons n of a single
layer network. The graphs show the RMS errors in
cyan.

Fig. 5: Varying the number of layers l. For l=1 and 2, the
total number of neurons is 10. For l=3 the total number
of neurons is 15.

Fig. 3: Evaluating a single layer neural network with 5
neurons. The magenta line shows the maximum error,
while the cyan line shows the Root Mean Square (RMS)
error. The curves are the result of 30000 epochs.

C Varying the learning rate

The graphs in Fig. 6 show the training results of the
training of a network with a baseline configuration, with
varying learning rates. A learning rate of 0.1 appears to
lead to a minimal RMS error.

D Varying the momentum

The graphs in Fig. 7 show the training results of the
training of a network with a baseline configuration, with
varying momentum. A momentum of 0.9 appears to lead to
a minimal RMS error.

E Varying the length of the Tapped Delay Line

The graphs in Fig. 8 show the training results of the
training of a network with Configuration 4 from Table I,
with varying length of the Tapped Delay Line. When the
length increases from the default 1 to 2, the networks
performance increases as the RMS error drops. However
when the length is increased to 3, the increasing RMS error
suggest that the network is less able to adapt. Apparently
the high delay data corrupts the prediction, rather than
improves it, because the information indicates less about
the Trolley's current situation. A TDL length of 2 appears
to lead to a minimal RMS error.

F Varying the number of parameters provided by the
plant

NCWB's Trolley plant can provide the neural network
with one or two input parameters, position and speed. To
evaluate the influence of this variable we compared the
RMS error curves for a number of network configurations.
The graphs from configurations 2 (2 0 0), 8 (2 2 0), 5(5 5
0) and 6 (5 5 5) may offer some insights into the behavior
of basic neural networks. The second input parameter
'speed' can be helpful with training a predictor for the
dynamic system. In Fig. 9 this shows in the lower RMS
error when both input parameters are used. Furthermore in
each case the RMS curve was more smooth when both
input parameters were used.

5

Fig. 6: Baseline configuration of the neural network, with
learning rates 0.1, 0.05 and 0.01

Fig. 7: Baseline configuration of the neural network,
with momentum m=0.9, 0.5 and 0.01

Fig. 8: Neural network Configuration 4, with varying
TDL lengths

Fig. 9: From top to bottom: network configuration 2(2-
0-0) and 8(2-2-0) with i=1 or 2 input parameters
provided by the Trolley plant.

V. DISCUSSION AND CONCLUSION

The results that were collected during the experiment can
be used to draw some elementary conclusions about the
use of neural networks for model based predictive control.

A general observation is that the RMS error curves that
resulted from changing the variables of interest, were
smoother for some values more than for others. A
smoother RMS error curve during the learning phase
suggests that the network learns at a more predictable rate.
In the case of dynamical systems more complex than the
Trolley plant, it may be better to configure a network for a
smoother RMS curve than for instance for minimal
amount of neurons. If for instance the NN controlling the
Trolley plant is integrated into a larger simulated
environment, the presence of jitter on the RMS curve may
make the adaptation process of dependent neural networks
more difficult.

Another observation is that providing the network with
more computational resources did not always seem to lead
to a performance improvement. For some variables such as
the number of neurons and their distribution across layers,
the optimal configuration is not determined by just adding
more neurons or layers, but determined by evaluating the
problem that the neural network has to solve. Fig. 4 shows
that the optimal solution (low RMS error and smooth
curve) is for n=5 instead of 10. Fig. 5 shows that the

optimal solution is for 2 layers and 10 neurons, instead of 3
layers and 15 neurons.

The graphic interface for the NCWB DOS application
appears very archaic, but on the brighter side NCWB
appears very stable and well documented. It provides all
features required for this research2. Using a different
simulation environment, such as MATLAB’s SimuLink
may provide greater flexibility and easier integration with
other applications for post processing of the data.

Neural networks appear to be suitable for use as
predictors of the behavior of a dynamic system. Given a
few basic parameters, their capability of learning appears
to quickly converge towards minimum, with a small
number of epochs (250). Optimal values for the parameters
can be determined by monitoring the actual network
performance, rather than by using a fixed and predesigned
configuration.

REFERENCES

[1] Jarmulak, J. (1994), “Neurocontrol Workbench Manual”, Delft
University of Technology, Delft.

[2] Declerq, F. & De Keyser, R. (1996) “Comparative study of neural
predictors in model based predictive control”, IEEE Computer
Society, Washington DC.

[3] Wilson, B. (2008). “The Machine Learning Dictionary”. Retrieved
July 5, 2009, Web site:
http://www.cse.unsw.edu.au/~billw/mldict.html

[4] Bryson, A.E & Ho, Y.C. (1969) “Applied optimal control”.
Blaisdell, New York.

[5] McCollum, P. (2003) “An introduction to backpropagation neural
networks”. Retrieved July 5, 2009, Web site:
http://www.seattlerobotics.org/encoder/nov98/neural.html

[6] Negnevitsky, M. (2001) “Artificial Intelligence – a guide to
intelligent systems”, Addison Wesley.

[7] Watrous, R. L. (1987). Learning algorithms for connectionist
networks: Applied gradient of nonlinear optimization. In Proceedings
of the IEEE International Conference on Neural Networks, 2, 619-
627.

[8] Jacobs, R.A. (1988). Increased rate of convergence through learning
rate adaptation. In: Neural Networks, 1, 295-307.

2 Some tweaking of the DOS box window (don’t run it full
screen for the textual parts) will allow complete and
intended usage of the program.

6

Fig. 10: From top to bottom: network configuration
2(2-0-0), 8(2-2-0), 5(5-5-0) and 6 (5-5-5) with i=1 or 2
input parameters provided by the Trolley plant.

	Using Neural Networks for model based predictive control
	I. Introduction
	A	Model based predictive control
	B	The backpropagation learning algorithm

	II. Problem statement and evaluation
	III. Experimental approach
	A The Trolley as a simulated dynamic system
	B	Experimental environment
	C	Experimental procedure
	D	Variables of interest
	E	Comparison with a baseline configuration

	IV Results
	A	Varying the total number of neurons
	B	Varying the distribution of neurons across hidden layers
	C	Varying the learning rate
	D	Varying the momentum
	E	Varying the length of the Tapped Delay Line
	F	Varying the number of parameters provided by the plant

	V. Discussion and conclusion
	References

