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.Abstract – In this report the use of neural networks for 
model  based  predictive  control  is  investigated.   In  a 
simulated  environment  a neural network was trained 
to  predict  and  control  an  electrical  Trolley  on  a 
horizontal  surface.  The   backpropagation  of  error 
algorithm was used to train the network. In each of the 
37 simulations that were performed, the focus was on 
some  variables  that  are  of  particular  interest.  These 
variables included the total number of neurons in the 
network, the number of hidden layers, the number of 
neurons per layer,  the learning rate,  the momentum, 
the  number  of  input  parameters  that  the  Trolley 
provides,  and  the  length  of  the  Tapped  Delay  Line. 
Under  all  investigated  configurations  the  network 
seemed reasonably capable of learning to predict and 
control  the  Trolley  plant.  There  appears  to  be  an 
optimal  trade-off  between   overall  performance  and 
computational  resources that is guided by the problem 
itself instead of an intelligently designed solution. 

Index  Terms –  Neural  networks,  control  systems, 
artificial intelligence.

I.  INTRODUCTION

This report investigates the use of neural networks as 
predictors of the behavior of a dynamic system. The neural 
network  is  used  in  a  model  based  prediction  control 
algorithm. In a simulated environment the neural network 
must manipulate the acceleration of a mechanical Trolley. 
Different  configurations  of  neural  networks  will  be 
evaluated on their ability to make this simulated Trolley 
stop at a predetermined location. 

To perform this investigation an experiment has been 
designed and executed. The design and the results  will be 
presented and discussed in the remaining sections of this 
report.  Before  clarifying  the  problem statement  and  the 
experimental  approach,  the  remainder  of  this  section 
provides a brief introduction to the model based predictive 
control and back propagation algorithms.

A Model based predictive control

Model  based  predictive  control   is  an  approach  to 
controlling a  dynamical  system.  Based  on the perceived 
causal relationships between the input and output or state 
of  a system, a model can be constructed.  This so called 
plant can be used to predict the future state of a dynamic 
system, while it is under a varying rate of control.

.

Different models for plants that can be used have been 
identified in the literature.  A general  input-output model 
using a discrete equation has been described by Krijgsman 
(Jarmulak, 1994). The difference between the models can 
be whether they make use of prior knowledge about the 
system or not, or if they take external factors into account. 
Declerq  and  Keyser  described  the  prediction  model  as 
being the neural model plus a noise model, adding some 
white noise to the equation (Declerq and Keyser, 1996).

The neural model can be used as a base for a predictor 
for  the dynamic behavior  of  the system.  This neural  net 
based  predictor  is  used  to  control  the  system state.  The 
model is used to make predictions about the future state of 
the system, in order to control the dynamic processes.  As 
with the models, there are different types of neural network 
based  predictors.  Declerq  and  Keyser  compared  the 
performance  of  feedforward,  radial  based   and  Elman 
neural  networks  (Declerq  and  Keyser,  1996). They 
conclude that the main problem with the performance is 
the validity of the neural predictor itself. They distinguish 
'emulators'  from 'predictors',  with the former being more 
faithful  general  approximations  while  the  latter  only 
approximates a system with regards to a limited prediction 
horizon  and  control  signal.  Although  the  feedforward 
neural net did not have the shortest training time, it has a 
better extrapolation property and requires less neurons than 
the other two.

B The backpropagation learning algorithm

Backpropagation  is  a  form of  supervised  learning  to 
train MultiLayer Neural Networks (MLNNs). It requires a 
feed-forward  perceptron  neural  network  architecture.  It 
was first explored in 1969 by Bryson and Ho in their paper 
“Applied optimal control” (Bryson and Ho, 1969). Initially 
it did not gain any recognition and it was not until the mid 
80s that it was rediscovered by Rumelhart et. al. before this 
technique was valued.

The  backpropagation  algorithm requires a training set 
of input and output pairs.  This makes that the algorithm is 
not suitable for all problems (McCollum, 2003), especially 
those that  can’t  easily  be  translated into an input/output 
pair.  Applications of the technique are mostly found in the 
field of pattern recognition.

The problem of training MLNNs compared to  single 
layer NNs is in the hidden layers. Since the desired output 
per node in these layers cannot be determined, algorithms 
like the delta rule (the training rule for single layer NNs) 
doesn’t work for the hidden layers.  The error per node is 
calculated via the formula 
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Errornode = Outputdesired – Input.

This formula requires the output to be measured, which 
for  hidden  layers  cannot  be  done.  The backpropagation 
algorithm solves this problem by assigning desired outputs 
to  nodes  in  the  hidden  layer  and  finally  train  the  NN 
(change  the  weights)  using  some training  rule.  The  full 
algorithm consists of three steps.

• First calculate the error for the output nodes in the 
output  layer  in  a  feed  forward  fashion  (this  is 
possible because the desired output are fixed in 
the training input/output pairs)

• Then propagate the error in the output layer over 
the  nodes  in  the  hidden  layer,  in  a  backward 
fashion (hence the name backwards propagation). 
This  error  is  a  weighted  sum of  the  connected 
nodes.  The  actual  output  for  the  hidden  nodes, 
together  with  the  propagated  error,  result  in  a 
desired output for the hidden nodes.

• Finally  the  weights  for  all  of  the  links  are 
updated. These weights represent the ‘knowledge’ 
of  the  NN,  but  the  back  propagation  algorithm 
also uses the weights to describe the “blame” or 
contribution to the error.  The weights are updated 
by some training rule in a way to minimize the 
propagated error.   

   Fig.  1: Backpropagation of errors is represented 
by  the  dashed  arrows  that  propagate  the  signal  
error  from  the  output  neurons  back  to  the  input  
neuron, while adjusting the weight matrices so  that  
the propagated error is minimized

 

The most interesting part of the algorithm happens in 
the  third  phase.  Choosing  a  suitable  training  rule  that 
modifies  these  weights  depends  on  the  problem.  We 
discuss here the generalized delta rule, which, unlike the 
original delta rule, is it able to deal with other activation 
functions  besides  the  basic  linear  one.  It  is  the  most 
commonly  used  training  rule  for  backpropagation  and 
suitable for many classification problems. This rule is also 
from  a  mathematical  point  of  view  very  sound.  The 

generalized delta rule is a gradient descent learning rule, 
effectively meaning it iteratively finds weights in such a 
way  that  the  propagated  error  per  node  (local  error)  is 
minimized (Negnevitsky, 2001).

Backpropogation  is  an  iterative  process,  continuingly 
decreasing the mean squared error (MSE). The MSE will 
eventually converge below some pre-defined point. At this 
point the weights have been configured in such a way that 
the network has “learned” a suitable solution. It will never 
learn the exact solution, it only approximates it. In some 
cases it will never converge below the pre-defined point, 
usually  indicating  that  with  the  current  configuration  a 
solution  to  the  described  problem  can  not  be  learned. 
Sometimes instead of MSE the root of the MSE is used, 
called the RMS error.

To  speed  up  the  learning  process  the  learning  rate 
parameter can be modified. The value of this variable is 
between  0  and  1  and  is  usually  very  small  (a  common 
value is 0.05). The backpropagation algorithm is based on 
small changes being made to the weights of the input at 
each step. If these changes are too large the performance 
may 'bounce around'  in a  counter  productive fashion.  In 
such cases the learning rate can be reduced, but at the cost 
of requiring  more  steps  to  reach  the  stopping  criterion 
(Wilson, 2008).  It is common to change the learning rate 
adaptively, based on the MSE. As such, when the MSE is 
decreasing for several epochs the learning rate is increased, 
and  when  the  MSE  is  increasing  and  decreasing 
(oscillating  behaviour)  for  several  epochs  the  rate  is 
decreased.  In  our  study  we  fix  the  learning  rate  and 
evaluate the results for three values. To smoothen the MSE 
descent the generalized delta rule can be enhanced with a 
momentum term. Now every iteration a small part of the 
old weight change is added to the normal weight change. 
According  to  Watrous  and  Jacobs  this  has  a  stabilising 
effect, and the total error converges more steady (Watrous 
1987, Jacobs, 1988).

II.  PROBLEM STATEMENT AND EVALUATION

This experiment aims to investigate if neural networks 
can be used as an identifier and controller in model based 
predictive control. The training and performance results of 
a  number  of  preconfigured  networks  will  be  collected 
during  an  experiment,  which  can  be  compared  and 
contrasted in order  to analyze  the performance of neural 
networks  as  identifiers  and  controllers  of  second  order 
dynamic systems.

III.  EXPERIMENTAL APPROACH

This experiment trains a neural network as an identifier 
and  controller  of  a  simulated  electrical  Trolley.  The 
experiments  are  set  up so that  a  number  of  variables  of 
interest  can  be  investigated.  The  recorded  results  of  the 
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experiment will be further analyzed in the next chapter of 
this report. 

A The Trolley as a simulated dynamic system

An electrically driven Trolley on a horizontal surface is 
selected as the dynamic system to use for the experiment. 
NeuroControl  Workbench,  the  software  package used to 
model and simulate the Trolley, offers two variations of 
this system. One version has the position of the Trolley as 
a  single output,  while  the other version also outputs the 
speed of the Trolley. This simulation has two parameters, 
gain k and response time . The gain is a proportional valueτ  
that shows the relationship between the magnitude of the 
input and output signals of the system. The response time 
determines how fast the Trolley reacts to changes in the 
input signal (Jarmulak, 1994).

The  Trolley  is  an  interesting  system  for  predictive 
control,  as  its  response  to  a  change  in  the  input  is  not 
acute.  Therefore  stopping  a  trolley  in  time  requires 
"knowledge" of how the trolley will respond with regards 
to change in the input.  Telling the trolley to stop just as it 
reaches the desired end point, the trolley will overshoot, 
and  corrective  action  is  necessary.  These  repeated 
corrections cause an oscillation around the end point.

B Experimental environment

To model  the  Trolley  for  our  research,  we  used  the 
NeuroControl  Workbench  (NCWB)  software  package, 
developed by Jacek Jarmulak  (Jarmulak,  1994).   It  uses 
plants to simulate different systems which can be trained 
using neural control.  The notion of a Plants is a familiar 
one within the field of neural control. A Plant is a system 
where input and output are causally  related.   On top of 
that, a plant keeps an internal state, usually affecting this 
relation.

NCWB  provides  several  pre-programmed  plants, 
alongside two user definable plants.  Among these plants 
are only two relevant to this paper,  namely both Trolley 
plants.  They differ in that one only has the current location 
as an input, while the other has both location and speed as 
inputs.  How this affects the performance is discussed later 
in this paper.

After  selecting  the  Trolley  and  configuring  its  basic 
set-up (gain  k  and response time ) the plant is ready forτ  
use.    This  still  leaves  the  configuration  of  the  neural 
network.  NCWB provides a limited configurability of the 
network and its inputs.  Networks can be configured to use 
past  positions  instead  of  just  the  latest  location.   The 
network  itself  uses  a  back  propagation  algorithm,  has  a 
maximum of three hidden layers each consisting of a user 
defined  number  of  neurons,  and  can  only  further  be 
tweaked through learn rate and momentum.  The effect of 
these variables on the performance is discussed in a later 
chapter.

C Experimental procedure

Within  the  NCWB  program  a  new  simulation  is 
initialized. This simulation is based on the Trolley plant, 
with a gain  k=0.45 and  response time  τ=0.05. A neural 
network is configured with different combinations of the 
variables of interest that are mentioned in the next section. 
A  trainings  set  of  50  elements  is  generated,  and  the 
learning algorithm is set to run for a maximum of 30.000 
epochs. With these settings a simulation is executed and a 
performance graph is recorded  for further analysis.

D Variables of interest

The neural network that is used in the simulation has a 
number of variables that are of particular interest.  These 
variables are: the total number of neurons in the network, 
the number of hidden layers, the number of neurons per 
layer,  the  learning  rate,  the  momentum,  the  number  of 
input parameters that the Trolley provides, and the length 
of the Tapped Delay Line (TDL)1. 

Table  I  and  II  list  the  different  combinations  of 
variables  with  which  the  experiment  has  been  repeated. 
The resulting graphs of 37 different simulations have been 
recorded for further analysis.

TABLE I
THE AMOUNT OF SIMULATED NEURONS AND THEIR DISTRIBUTION ACROSS THE 

HIDDEN LAYERS OF THE NEURAL NETWORK. CONFIGURATION 1 IS THE BASELINE 
CONFIGURATION

Neurons on  layer Neurons on  layer 

Config. #1 #2 #3 Config. #1 #2 #3

1 5 0 0 5 5 5 0

2 2 0 0 6 5 5 5

3 1 0 0 7 5 10 5

4 10 0 0 8 2 2 0

1A tapped delay line (TDL) is a delay line with at least one 
``tap''. A delay-line tap extracts a signal output from 
somewhere within the delay line, optionally scales it, and 
usually is summed with other taps to construct the delay 
line signal.
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Fig. 2: An electrically driven Trolley on a horizontal  
surface (Jarmulak, 1994)



TABLE II
SOME NEURAL NETWORK CONFIGURATIONS WERE REPEATEDLY SIMULATED WITH 

VARIATIONS TO ONE OF THESE VARIABLES. VALUES IN THE COLUMN LABELED #1 ARE 
PART OF THE BASELINE CONFIGURATION

#1 #2 #3

Learning rate 0.1* 0.05 0.01

Momentum 0.9* 0.5 0.01

Tapped Delay Line 1* 2 3

Trolley Plant inputs 1* 2

E Comparison with a  baseline configuration

As a baseline for further comparison, Configuration 1 from 
Table  I  has  been  chosen.  The  learning  rate  of  0.1, 
momentum of 0.9 and TDL length of 1 were chosen as 
default  values.  This  baseline  configuration  uses  the 
variation of the Trolley system that provides a single input 
parameter,  the  position  of  the  Trolley.  The performance 
graph shown in Fig. 3 indicates that most of the networks 
adaptation takes place in the first 100 epochs. During the 
remaining 29.900 epochs the  error  gradient  continues  to 
converge to, but never actually reaches a minimum value. 
This  behavior  appears  to  continue  when  the  network  is 
trained with more epochs. 

In  the  next  section  of  this  report  some  of  the  more 
interesting  results  from  the  different  test  runs  will  be 
presented. 

IV  RESULTS

In  total  37  simulations   have  been  performed  and 
recorded with the Trolley plant in NCWB. To investigate 
each of the mentioned variables of interest, the recorded 
error  graphs  of  selected  network  configurations  are 
compared  and  contrasted.  This  is  done  by  discussing  a 
single  graph  that  shows  multiple  RMS  error  curves  of 
interest. 

A Varying the total number of neurons 

The graphs in  Fig.  4  show the  training  results  for  a 
single layer  network with n=1,2,5 and 10 neurons.  This 
corresponds to Configurations 1 to 4 in Table I. Lowering 
the number of neurons from the baseline of 5 increases the 
RMS error, with n=2 giving the worst performance. The 
increase of neurons from 5 to 10 does not seem to have 
such a significant impact on the RMS error. This suggests 
that there exists an optimal amount of neurons for which 
the network is still capable of performing the computations 
while minimizing the RMS. 

B Varying  the  distribution  of  neurons  across  hidden 
layers

The graphs in  Fig.  5  show the  training  results  for  a 
network  with  1,  2  and  3  layers.  When  increasing  the 
number  of  layers  while  keeping  the  total  number  of 
neurons  equal,  the  resulting  network  performs  about 
equally well after 250 epochs (l=1 and l=2).  The curve for 
the RMS error is also more monotonous than with a single 
layer.  However  when  yet  another  layer  is  added,  the 
resulting graph (l=3) indicates that the network has more 
trouble with adjusting its performance. 
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Fig. 4: Varying the number of neurons n of a single 
layer network. The graphs show the RMS errors in 
cyan.

Fig. 5: Varying the number of layers l. For l=1 and 2, the 
total number of neurons is 10. For l=3 the total number  
of neurons is 15. 

Fig. 3: Evaluating a single layer neural network with 5 
neurons. The magenta line shows the maximum error,  
while the cyan line shows the Root Mean Square (RMS) 
error. The curves are the result of 30000 epochs.



C Varying the learning rate

The graphs in  Fig.  6 show the training results of the 
training of a network with a baseline configuration, with 
varying learning rates.  A learning rate of 0.1 appears to 
lead to a minimal RMS error. 

D Varying the momentum

The graphs in  Fig.  7 show the training results of the 
training of a network with a baseline configuration, with 
varying momentum. A momentum of 0.9 appears to lead to 
a minimal RMS error. 

E Varying the length of the Tapped Delay Line

The graphs in Fig. 8 show the training results of the 
training of a network with Configuration 4 from Table I, 
with varying length of the Tapped Delay Line. When the 
length  increases  from  the  default  1  to  2,  the  networks 
performance increases as the RMS error drops. However 
when the length is increased to 3, the increasing RMS error 
suggest that the network is less able to adapt.  Apparently 
the  high  delay  data  corrupts  the  prediction,  rather  than 
improves it,  because the information indicates less about 
the Trolley's current situation. A TDL length of 2 appears 
to lead to a minimal RMS error.

F Varying the number of  parameters provided by the  
plant

NCWB's Trolley plant can provide the neural network 
with one or two input parameters, position and speed. To 
evaluate  the  influence  of  this  variable  we compared  the 
RMS error curves for a number of network configurations. 
The graphs from configurations 2 (2 0 0), 8 (2 2 0), 5(5 5 
0) and 6 (5 5 5) may offer some insights into the behavior 
of  basic  neural  networks.  The  second  input  parameter 
'speed'  can  be  helpful  with  training  a  predictor  for  the 
dynamic system. In Fig. 9 this shows in the lower RMS 
error when both input parameters are used. Furthermore in 
each  case  the  RMS curve  was  more  smooth  when both 
input parameters were used.
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Fig. 6: Baseline configuration of the neural network, with 
learning rates 0.1, 0.05 and 0.01

Fig. 7: Baseline configuration of the neural network,  
with momentum m=0.9, 0.5 and 0.01

Fig. 8: Neural network Configuration 4, with varying 
TDL lengths

Fig. 9: From top to bottom: network configuration 2(2-  
0-0) and 8(2-2-0) with i=1 or 2 input parameters 
provided by the Trolley plant.



V.  DISCUSSION AND CONCLUSION

The results that were collected during the experiment can 
be used to draw some elementary conclusions about  the 
use of neural networks for model based predictive control.

A general observation is that the RMS error curves that 
resulted  from  changing  the  variables  of  interest,  were 
smoother  for  some  values  more  than  for  others.  A 
smoother  RMS  error  curve  during  the  learning  phase 
suggests that the network learns at a more predictable rate. 
In the case of dynamical systems more complex than the 
Trolley plant, it may be better to configure a network for a 
smoother    RMS  curve  than  for  instance  for  minimal 
amount of neurons. If for instance the NN controlling the 
Trolley  plant  is  integrated  into  a  larger  simulated 
environment, the presence of jitter on the RMS curve may 
make the adaptation process of dependent neural networks 
more difficult.

Another observation is that providing the network with 
more computational resources did not always seem to lead 
to a performance improvement. For some variables such as 
the number of neurons and their distribution across layers, 
the optimal configuration is not determined by just adding 
more neurons or layers, but determined by evaluating the 
problem that the neural network has to solve.  Fig. 4 shows 
that  the  optimal  solution  (low  RMS  error  and  smooth 
curve)  is  for  n=5  instead  of  10.  Fig.  5  shows  that  the 

optimal solution is for 2 layers and 10 neurons, instead of 3 
layers and 15 neurons.

The graphic interface for the  NCWB DOS application 
appears  very  archaic,  but  on  the  brighter  side  NCWB 
appears very stable and well documented. It provides all 
features  required  for  this  research2.   Using  a  different 
simulation  environment,  such  as  MATLAB’s  SimuLink 
may provide greater flexibility and easier integration with 
other applications for post processing of the data.  

Neural  networks  appear  to  be  suitable  for  use  as 
predictors of the behavior of a dynamic system.  Given a 
few basic parameters, their capability of learning appears 
to  quickly  converge  towards  minimum,  with  a  small 
number of epochs (250). Optimal values for the parameters 
can  be  determined  by  monitoring  the  actual  network 
performance, rather than by using a fixed and predesigned 
configuration. 
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