
1 | P a g i n a

Report assignment 2

Construction of an augmented mask program

using AR Toolkit

Course

IN4151 3D Computer Graphics and Virtual Reality (3DCG&VR)

Version

Final (januari 2009)

Group 3

Steven Bos 1319671

Hannes Smit 1228897

i

Introduction

In this report we present our result for assignment 2. For this assignment we liked to do

something with virtual reality. After some investigation we stumbled on AR Toolkit, a
computer vision framework. To use the most recent version of the framework (version 4.3)

you need to buy an expensive license[1]. Fortunately there is also an open source version

which is quite complete[2]. It has USB camera support and marker detection build-in to give
us a head start. And it is build using Open GL, which was mandatory for this assignment.

Looking at the project page on the AR Toolkit website, many interesting application have

been build. For example ARtag[3] has an excellent demo[4] of AR Toolkits (open source
version) potential on its webpage and on youtube. This inspired us to do something with it.

We came up with the idea to place markers on a human face and project a mask over it,

including moving features.

In this report we show what we developed in the past weeks. An introduction to our

software is described in chapter 1 (Installation) and chapter 2 (User Interface). In chapter 3
we discuss AR toolkit, its basics and discuss a paper on the workings[8]. In chapter 4 we

discuss building our program using AR Toolkit. We close this report with a short review of

the assignment in chapter 5.

Enjoy reading,

Group 3

Hannes & Steven

ii

Table of Contents

1. INSTALLATION ... 1

§1.1 DEPENDECIES .. 1

§1.2 SETUP VISUAL STUDIO 2005 .. 1

2. USER INTERFACE .. 2

3. AUGMENTED REALITY & AR TOOLKIT BASICS .. 4

§3.1 AUGMENTED REALITY ... 4

§3.2 AR TOOLKIT INTERNAL WORKINGS ... 4

§3.3 TRACKING MARKERS ... 5

§3.4 RECOGNITION PERFORMANCE ... 7

4. IMPLEMENTATION .. 8

§4.1 STEP 1: CONSTRUCTING THE INITIAL FRAMEWORK ... 8

§4.2 STEP 2: DEVELOP FEATURES ... 8

§4.3 STEP 3: DEVELOP NEW MARKERS ... 9

§4.4 IMPLEMENTATION NOTES ... 10

5. REVIEW AND FUTURE WORK ... 11

§5.1 REVIEW ... 11

§5.2 FUTURE WORK .. 11

REFERENCES ...A

1 | P a g i n a

1. Installation
S+H Virtual Mask is written in C++ using OpenGL and developed in MS Visual Studio 2005.
It is tested on Windows XP only. The software is dependent on several libraries which are

not present by default. This section will describe how to setup MS Visual Studio 2005 and

play with the code. After compiling the project, run the version by clicking the exe in the bin
directory. The included SHvirtualMask executable does not need any installation; just run it.

§1.1 dependencies

This software makes use of:
• OPENGL and its default GL,GLU,GLUT libraries

• GLUI (an extension of GLUT, providing basic UI controls)

• AR Toolkit version 2.72.1

§1.2 setup visual studio 2005

The libraries and header files necessary for this code project are included. The following 7

steps sets-up visual studio 2005, so it can find these libraries and header files.

1 Copy the unzipped folder glut with all its subfolders to the c:\program files

directory. Result should be c:\program files\glut\..

2 Update default search path in windows environment variables by including
 C:\program files\glut\lib

3 Restart PC to load search path

3 Copy the unzipped folder virtualMaskProject with all its subfolder (AR toolkit

libraries included here) to any desired location. We installed it at
my documents\virtualMaskProject

5 Open visual studio. Go to Tools > Options > expand Projects and

Solutions > expand VC++ directories. In VC++ directories “select show

directories for” and select include files. Add the following line:
C:\Program Files\glut\include

6 In the same VC++ directory go again to “select show directories for” and

now select libraries files. Add the following line:
 C:\Program Files\glut\lib

7 Go to the virtualMaskProject folder and go to \src\msvc subfolder. Double

click the Visual Studio solution file to start up the project.

NOTE: The specific dependencies (in configuration properties>linker>input>

additonal dependencies) are already specified in the project file. They should be
glui32d.lib, glut32.lib, glu32.lib, opengl32.lib, odbc32.lib,

odbccp32.lib, libAR.lib, libARgsub.lib, libARgsub_lite.lib,
libARvideo.lib

2 | P a g i n a

2. User interface

This section discusses the user interface controls. The UI is actually very simple, but
complete. The primary input-device is the mouse. There are no right or middle mousebutton

event-handlers and keyboard input is also limited to arrow keys only (to modify menu

values). The program closes by clicking on the X button in the top right corner.
In Fig. 2-1 the available controls are pictured.

Fig. 2-1 Available user interface controls

The controls are grouped in 2 columns: Mode controls and Virtual Mask options

Mode Control

There are three modes to choose from:

Real face Mask This mode shows a human face (texture) when a single particular
marker is detected. It only reacts on markers active in this mode.

 These markers are: Patt.Bush, Patt.Gates, Patt.Hirst

Animated Mask This mode shows an animated face or parts of an animated face

(based on standard open gl objects) when the program detects

particular markers. It only reacts on markers active in this mode and is
able to detect multiple markers concurrently.

 These markers are: Patt.body (the face without features), Patt.eyes
(just the eyes), Patt.mouth(just the mouth), Patt.eyebrows(just the
eyebrows).

Permanent Mask This mode shows the same animated face or parts of that face as the
previous mode but differs in function. When the program detects a

marker it enables the face part and keeps drawing it, even when the

markers is not detected anymore. When a delete all marker is detected
the program returns to its initial state. This way a face can be

constructed and adjusted in a more controlled way.

 The active markers are the same as in the previous mode and include

one more: Patt.kanji (the delete all marker).

3 | P a g i n a

Virtual Mask options

Choose model This drop down box becomes active only in the animated mask mode
and permanent mask mode. It allows the user to choose from four
basic emotions/facial expressions which are directly translated on the

active markers.

Enable 3D Mask This drop down box becomes active only in the real face mask mode.
It allows the user to enable/disable a 3d wireframe model containing

very basic facial features behind the texture, to create the illusion of a

3d face. AR Toolkit is able (in a limited way) to detect a marker from
multiple angles.

4 | P a g i n a

3. Augmented Reality & AR Toolkit basics

This chapter gives a short introduction to augmented reality and AR Toolkit, a framework to
augment reality by means of a webcam and markers.

§3.1 Augmented Reality

Augmented Reality is a Computer Vision field which is getting lots of attention nowadays.
The use of these applications reach from Head Mounted Displays (HMD’s) to mobile phone

applications which are suited with camera’s and good displays.

Sometimes 3D models are displayed over real world data, but it is also possible to add
information (texts, figures, sounds) to certain contexts.

Using markers, which can be identified by camera’s, applications like AR Toolkit create a link
between virtual information and real physical objects. Virtual characters can be used in a

physical game for example.

In Augmented Reality you have basically two computer vision techniques to combine real

world images with artificial 3D models. One is the superimposition of 3D data on live video

data, the other is the use of transparent displays were only the 3D data is displayed on it.

With AR Toolkit not only recognition of markers takes place, the position of markers and

their orientation are also detected. In this way the coordinates of virtual objects can be

aligned to real objects.

§3.2 AR Toolkit internal workings

The Augmented Reality (AR) Toolkit projects 3D Computer graphics over live video frames.

By making use of tracking markers coordinates in the real world and coordinates of the
models can be related. This is done via the following steps, which are displayed in figure 3-1.

 Fig. 3-1 AR Toolkit general flow diagram (image courtesy of [2])

5 | P a g i n a

1. Video capture
Live video frames from i.e. a regular webcam are captured as still images.

2. Search for square shapes
By making use of binary images containing distinctive squares the software can track

markers. In this way the marker frames are identified.

3. Calculate position of the camera

When the position and form of the marker is detected, the position of the camera can

be calculated.

4. Identify marker
Every marker has a certain symbol inside its frame. An AR Toolkit project has a
collection of symbols preloaded in its memory. These symbols are matched to the

captured symbol from the video frame.

5. Model drawing

A three dimensional object, defined in the software application, is projected. The

position and 3D orientation of the objects is determined by the marker orientation in
the real world.

6. Overlay video with model view

The model is rendered on top of the video stream. Now it looks as if the object is

attached on the real world marker.

Note: It is possible to track/project multiple markers/objects at the same time in this

scheme.

AR Toolkit has a straight-forward architecture as seen in figure 3-2. The main pipeline is

shown in figure 3-3.

Fig. 3-2 AR Toolkit architecture Fig. 3-3 AR Toolkit main pipeline

§3.3 Tracking markers

To accurately track markers, image processing techniques are used. Before we explain how
images are processed, first, we will discuss how the coordinate systems are organized (figure

3-4)

6 | P a g i n a

Fig. 3-4 Coordinate systems & distortion

The marker coordinates (Xm, Ym and Zm) are related to the camera coordinates (Xc, Yc and
Zc) via the ideal screen coordinates (xc and yc). The following formula in figure 3-5,

describes the transformation between marker coordinates and camera coordinates.

Fig. 3-5 Transformation formula between marker and camera coordinates

Here the V components define the rotation, the W components define the translation.

Due to camera distortions and the perspective projection
matrix the observed screen coordinates (xd and yd) are not

exactly the same as the ideal (see figure 3-6). Therefore a

distortion formula was created in which the distortion factor
 can be set (and can be tuned via camera calibration). Fig. 3-6 Distortion

For every video frame AR toolkit searches for a marker. The square frame of the marker
makes it possible to recognise features. This is done by thresholding, labelling and feature

extraction (area and position). Next the contours are extracted and four straight lines are

fitted. The images in 3-7 below show how the Hiro pattern is processed according to this
procedure.

7 | P a g i n a

1. The original image is captured 2. The image is thresholded to a binary image

3. The contours are found 4. The marker edges and corners are extracted

Fig. 3-7 AR Toolkit marker detection mechanism

This process is fast and will be done for every video frame. Unfortunately features will have

bad quality when jitter occurs for example. This is improved by making use of previous
frame information. Although this cannot be used in the first frame, it gets more stable

results. We disabled the use of previous frame information in our program because of the

trade off against accuracy, which is important for real time and accurate face features.

§3.4 Recognition performance

The following conditions influence the recognition performance:

• Visibility. Markers must be in sight; covering up markers with hands or other
markers lets it disappear.

• Range. The size of the marker and the distance between the marker and the camera

has a big influence on the performance of the marker detection.
• Pattern Complexity. The more complex a pattern is, the worse the tracking

performance gets.

• Marker orientation. The more perpendicular the marker is to the camera, the

better recognition performance is. When markers become more horizontal (and
parallel to our cameras viewing direction) also the patterns become indistinctive.

• Lighting conditions. Too much light or reflective patterns may influence the results

of the threshold step and thereby influence the recognition of frames or patterns.

8 | P a g i n a

4. Implementation

Just installing the AR Toolkit and extending one of its examples is (logically) not considered
as sufficient result for this assignment. This chapter elaborately discusses the creation of our

program (the process), what code we reused and what code we developed ourselves.

§4.1 Step 1: Constructing the initial framework

AR Toolkit provides a useful set of examples out-of-the-box. It contains the “simpleTest
example” demonstrating the detection mechanism of a single marker and the display
mechanism when a single marker is detected (and draws a basic OpenGL cube). Another

useful example is the “loadMultiple example” explaining the detection and display mechanism
of multiple markers concurrently (on non pre-programmed locations). All these examples use

the gsub rendering library of AR Toolkit which is layer on top of OpenGL handling amongst

others the window events. We wanted to implement a basic user interface (using GLUI),
which isn’t present in AR Toolkit. GLUI is an excellent library for rapid UI design but it needs

control over the window events. Luckily another example (“simpleLite example”) also present
out-of-the-box, demonstrates the usage of the gsub_lite library which provides OpenGL
window handling. This example however uses the detection mechanism of single marker.

To wrap up, we replaced the multi marker mechanism of loadMultiple with the single marker
mechanism present in simpleLite. We did just that and after some tweaking and including
GLUI, we created our initial framework. With the framework ready we could begin calibrating

the Logitech Quickcam Messenger webcam (a tedious process).

§4.2 Step 2: Develop features

Initially we wanted to track a human face with markers attached to it and project a virtual

mask on it with moving face features. When we developed a mask with only two markers

(one on the forehead and one on the chin) we noticed that the projected talking mouth was
not in sync with the original human talking and was sometimes displaced incorrectly

compared to the nose and other face features. Assuming AR Toolkit handles its projections

consistently, the marker was not recognized correctly because of:

• Changing light conditions

• Curved marker surface when attached smoothly to skin

• Similar looking markers when using a low-resolution camera

Although the extension on AR Toolkit, AR Toolkit+ (now named Studierstube[5]) is able to

track far tinier markers under worse light condition it still wouldn’t solve the curved marker
surface detection problem. Also, both AR Toolkit and AR Toolkit+ as they are now, are just

too sensitive for lighting changes. Commercial solutions, who use specialized software and

markers just for the purpose of tracking facial features have nothing to fear (yet) from this
open source alternative.

Our original plan failed, so we came with the idea to add some marked based interaction on
an animated face (we stuck to the mask theme). First we developed an animated face,

constructed of four face parts (using only OpenGLdrawing primitives) and gave the face four

basic expressions. We then added a function that permanently displays any detected marker
and a delete-all marker that disables all detected markers. The emotions can be changed via

the GUI, although implementing a marker based change is easily constructed.

9 | P a g i n a

§4.3 Step 3: Develop new markers

There is few theory on marker design. The following “rules/guidelines” are trivial, found in
AR Tookit documentation or result from §3.4 (detection performance):

• The marker must be asymmetric (otherwise correct marker orientation fails)

• The marker must have a small border (detection rate decreases significantly when
border is 0.0 because markers can blend in surrounding)

• Markers may have different shapes then the square markers provided with the

examples (marker configuration needs to be adjusted for the desired shape)

• Markers may contain color, because AR Toolkit translates the marker to grayscale
internally

• Markers must not be complex, since it influences recognition (although no theory on

what is considered complex)

But these rules didn’t help us figure out which markers design were best. We assumed that

high contrast markers (with only pure black and pure white colors) would do best because it

is trivially not complex (rule 5). But humans like colors and familiar symbols and not b/w
squares. So we experimented a bit with different designs. After every design we trained AR

Toolkit to recognize them with a small program called mk_patt, which finds the marker in a
video frame and then translates it to a binary file.

Our small marker design experiment gave the following result:

• We compared the default “Hiro” pattern with a new simple marker (see Fig. 4-1)
containing a high contrast pattern of 2 squares. We noticed no differences in

detection of the markers.

• We made a marker which symbol was a jpeg of Bill Gates in grayscale(complex, see
Fig 4-2a) and compared it with a simple design (Fig 4-2b). The difference was

slightly noticeable, the simple marker could be recognized up to about 0.9 meters

distance (surprisingly, because the marker was unrecognizable for human vision and
the systems still detected it), while the jpeg marker could only be recognized up to

about 0.6m.

• The last experiment we did was a hybrid design where a small grayscale jpeg was
centered in the middle. This gave the marker a very recognizable artifact for the

human, while at the same time have ¾th of the marker free for high contrast, low

complex symbols. We implemented this for our animated mask feature, because its
detection was acceptable for our program (distance requirements between 0.2m and

1m)

Fig 4-1. Simple high contrast marker Fig 4-2ab Complex and simple Gates marker

Unfortunately, because of the deadline we could not do more and better measurements
and therefore cannot draw real conclusions. Though, the mini experiment did not present

any counter examples against the design guidelines we presented and listed above. The

found results are very dependent on the used webcam and current lighting conditions.
Result will be better (as seen on the internet) when using a better webcam and stable

lighting conditions.

10 | P a g i n a

§4.4 Implementation notes

The following code is all developed by us:

• All code in mask.cpp

• the code in routines: control_cb(), initLights(), draw_object(), GUImode(), a large

part in Display() and a large part in main()

On a side note: the initial framework (enabling multiple markers detection with the default

OpenGL render routines (gsub_lite) instead of the default AR Toolkit render library) was also

developed by us!

11 | P a g i n a

5. Review and future work

This chapter presents our review on this assignment in the first paragraph and our
recommendation for future work in the second.

§5.1 Review

We enjoyed working on this assignment, although we couldnt complete our initial plan due

to the reasons presented in chapter 4. The timeframe and our relative poor programming

skills gave us a hard time to produce a nice(r) result. We started this assignment with no AR
Toolkit experience, so getting familiar with the library, documentation and related theory

took some time. Other time consumers were building the initial framework with GLUI and
creating a mask (with correctly placed face parts), based on a hierarchical structure of

OpenGL objects.

§5.2 Future work

As mentioned in the introduction a lot of really cool applications have been build with AR
Toolkit. Thanks to this assignment we acquired a bit of experience with it and definitely like

to play with it some more in the future. Ideas we would like to explore:

• Create a simple game with collision detection of two markers, without losing

augmented projection.

• Improve marker detection by adding an infrared camera and RFID on every marker
for accurate tracking under any light condition (no need for adjustments to

environment and make it camera independent without recallibration)

A | P a g i n a

References

Webreferences

1) http://www.artoolworks.com/ARToolKit_Professional.html

2) http://www.hitl.washington.edu/artoolkit/download/

Note: some images in chapter 3 are used from the website of [2]

3) http://www.artag.net

4) http://www.youtube.com/watch?v=ItOtTdhDoto

5) http://studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php

Books

6) Hearn,D., Baker, M., (2004). Computer Graphics with Open GL. 3th edition
international version, Pearson Education.

Reader

7) Nieuwenhuizen, P.R, et al. (2007). Computer Graphics Lecture notes. TU Delft reader

course in2905-I.

Papers

8) Kato, H., Billinghurst, M. (1999) Marker Tracking and HMD Calibration for a video-based
Augmented Reality Conferencing System. In Proceedings of the 2nd International Workshop
on Augmented Reality (IWAR 99). October, San Francisco, USA.

