Design document of the ISSA parser

Steven Bos and Remco Jansen

Delft University of Technology, Faculty of EEMCS
steven@stevenbos.com entreco@gmail.com

Abstract. This paper describes our early finding to a new approach on
parsing a sentence and extracting semantical information. The Infinite
Sentence Semantic Analyser (ISSA) parser uses both syntactical infor-
mation based on a PCFG, and a semantic grammar (SG). The parser
uses the roots of a syntax parse tree, to deteremine multiple sentences in
one. It appears that this shallow analysis in combination with a SG is suf-
ficient to extract basic understanding of a sentence in the 'EWI-project’
domain. Results show that the ISSA parser is able to extract some infor-
mation when it faces unknown words by its context. More importantly
it can extract all intended meaning of a domain model. The most time
consuming tasks are finding quality rules for the semantic grammar and
testing the grammar. The parser could easily be extended with a Word-
NET feature to further increase the understanding, because WordNET
references on lexical level are already present in our SEMISUSANNE-
based PCFG. Other extensions like the usage of 'parts of speech’ and a
automatic learning engine based on Hidden Understanding Models could
also increase the meaning extraction of this parser

1 Introduction

Extracting semantical information is key in the domain of Natural Language Un-
derstanding. Fields and applications who depend on the accurate (deeper) mean-
ing of a sentence are various. For example in the field of Machine Translation, an
automatic translator could overcome the language barrier when searching (sci-
entific) information on the Internet or could support multi-lingual negotiations
where instant translation is absolut crucial. Another field is that of Dialogue
Systems. The 'TU Delft EWI-project’ is an application where the 3D virtual
avatar named 'EWT’ is equipped with a dialogue system so that it (ultimately)
can communicate on a very basic human level.

Previous work has shown that there currently is no single semantical analyser
that suits all NLU fields and applications [1]. The ISSA parser we developed is
no exception, it is designed for the EWI-project and therefore focusses on the
field of Dialogue Systems. Within this field, one of the widely applied approaches
of doing semantic analysis is with help of semantic grammars (SGs) [2]. One of
the great advantages of SGs is that the semantics of a sentence can be directly
read of the parse tree. One of the major drawbacks is the limited reusability
of a SG, it is knowledge domain dependent [3]. The EWI avatar will initially

operate in one knowledge domain, so this drawback shouldnt pose a problem
and thus justifies our choice for SG over approaches like "Template matching
information extraction’ or ’syntax-driven semantical analysis’. The latter has a
theoretical advantage that allows it to capture domain independent information
with one grammar. Unfortunately this approach requires a syntax grammar ex-
tention, with semantic annotations on a rule-to-rule basis. Not only is this time
consuming job more suitable for linguistic experts, it is still very theoretical and
has its own trade-offs.

We acknowledge the importance of knowing the syntax of sentence; tests
by Gibson [in 1998] show that humans do look at the syntax when extracting
the meaning. We therefore looked for a way to use the syntactic information
and combine it with a semantic grammar to extract more accurate meaning.
This resulted in the ISSA parser who’s workings and algorithms are desribed in
chapter 3. Information on the workings and background of the PCFG parser,
which produces our syntactic information, can be found in the paper of Adriaan
de Jong [in 2008]. In the next section we describe the other input component of
our ISSA parser; the semantic grammar.

2 Developing a Semantic Grammar

The most important input for the ISSA parser is the semantic grammar. Building
a semantic grammar is a delicate proces; you need to find rules that capture
knowledge in a specific domain. The following subsections explain how we found
our rules.

2.1 Development approach

When doing some research on building semantic grammars, we found an ap-
proach which is stated by Gavalda as the ‘the traditional Semantic Grammar
development approach’ [3]. It consist of 5 phases, namely data collection, de-
sign domain model, development kernel grammar, expansion grammar coverage
and deployment. Because our ISSA parser approach is a experimental one, we
thought to only focus on the first three steps. Step five is just building a ready-
made package for an application. Step four, which is what makes the system
future proof (because a kernel grammar is usually too limited to cover the do-
main) requires a study of its own. Gavalda builded a system called GSG [4]
which semi-automatically learns new semantic mappings. She mentions in her
paper that experimenting with Hidden Understaning Models might be a better
way to learn mappings fully automatically by just giving enough training data.
The approach with HUMs (also referenced as ‘stochastic models’) was also men-
tioned independently by our instructor dr. ir. Pascal Wiggers. Next we discuss
our three steps to build our kernel grammar.

2.2 Phasel: Data collection

We started with a domain investigation. Fortunately, Remco helped first year
students growing accustomed to the way things work on TU Delft as well as
answering questions. We then sat down and made a list of 5 questions, which
the semantic parser should initially be able to parse. The construction of the
ISSA parser is part of the EWI-project and therefore the parser should also be
able to handle pragmatics. We started by including 2 basic sentences, to make
our total data collection 7 sentences. The results in presented here:

1. Statement

— My name is Steven’ or "My name is Remco’
2. Request

— "What is the difference between TU Delft and TU Eindhoven’
— "What is the difference between MKE and Computer Science’
— "When does the first semester start?’

— "What courses are given at the tudelft’
3. Statement+Request

— I like Mathematics, what faculty would you recommend’
4. Opening

— ’Hello Computer’

2.3 Phase2: Domain model

The next step is distinguish key concepts in the sentences of our data collection.
Examples of the found concepts were: location, person and time. After that we
developed a model with hierarchical relations between key concepts and made
up new higher level and lower level concepts like: point (in time) and possible
sentence starts like what, where, how, etc. Under the root of a tree is a dialogue
act according to the DAMSL scheme by Allen and Core, 1997 [?] like a request or
a fact (statement/claim made by the speaker). When building the domain model
we realised that we used a wrong name convention so that it might appear that a
concept 'name’ of a university is the same 'name’ as of a person, they are of course
different. A better name convention would be universityName and personName.
The domain model has four levels: intial (Ivl 1),continuation (lvl 2),concept (lvl
3) and terminal (Ivl4). We present here a small part of the domain model of all
levels:

Root of a .
sentence
1
i
level 2 ;
Person Information
concepts

Fig. 1. DM part: level 1,2

Dialogue act

level 1
concepts

i =
3

Level 2
concept

|
Level 3 s
Course
concept
level 4 Teacher
concepts

Fig. 2. DM part: level 2,3,4

Level 3
concept
f

]
Level 4
concept

Data Wiggers

Fig. 3. DM part: level 3,4,data

Information

Name

)]

2.4 Phase3: Kernel grammar

With the domain model we can infer production rules out of the relations. Every
concept in the domain model must be reached. Note that the wrong name con-
vention also appears in the rules (to keep it consistent). All the rules together
form the kernel grammar (the basic grammar) in contrast to the user grammar
which complements the kernel grammar with rules found during for example
grammar expansion activities. The following is a part of our kernel grammar.
The complete grammar can be found in our application directory. Rules:

information] — [location];[person];[faculty];[course]
location] — [university];[person];|city]

person| — [student];[teacher];[EWI];[dean]

time| — [course];[semester]

= W N~

-
-
-
-

Four different types of rules have been inferred. The first kind of rules are
initial rules. Which allow for an access point in the grammar. They should quickly
recognize parts of a sentence and determine the kind of dialogue act. Next there
are continuation rules. Once an initial rule has been found, the continuation
rules can help to analyse the sentence on a deeper level. The continuation rules
ultimately lead to concept rules. Those are rules about the different concepts
defined in our domain model. Concepts such as 'university’ and ’course’ are key
concepts in our domain model and the concept rules describe how these objects
are composed of smaller parts. For example a 'university’ consists of a name,
facilities and a city. Of course, in real life a university consists of many more
things. But then it should also be included in the domain model, which could
lead to very large models. Therefore it is important to think about introducing
new concepts and the relevance of it in a specific knowledge domain.

Finally we have the terminal rules. Terminal rules contain the highest level of
detail. The terminals are actual words that define our grammar. They define for
instance that a name of a course can be 'mathematics’. While the initial rules are
quite abstract in the sense that they refer to general objects like ’information’
or ’location’.

3 Semantic Grammar Parser Prototype

Goal of the semantic parser is to extract meaning of the words that are being
used by the user. In an ideal situation the semantic parser, ISSA, knows the
meaning of all possible words and also knows when people are being for example
sarcastic, or joking etc. For a computer to know all this information is needed
about the context. The ISSA parser is not context aware, it is however, able
to extract as much information as possible from a sentence, using a SG and
syntactic information.

3.1 Development approach

Key to creating a semantic parser is the ability to extract information from
sentences. Since a relatively small amount of words are defined in the grammar,
the most important feature of the semantic parser should be the ability to deal
with incomplete information, or so to say, deal with unknown words. Since we
cannot add all information in the rules, we need to extract information from the
sentences in a clever way. Ultimately the EWI-project should be able to take
part in a conversation. In order to comply with this, goal of the prototype is
to parse sentences real-time. By looking at one word at a time, it is possible
to parse a complete sentence by looking at a single word. As soon as we find
something interesting, we can parse the remainder of the sentence. Thus we can
increase the level of details by going deeper in the semantic parse tree. There is
a small trade-off in our real-time approach and that its how multiple words that
belong together (ie. with spaces) like "TU Delft’ are parsed. We choose to use a
'space’ to indicate the next word. Momentarily TU Delft is written as tudelft to
be recoqnised. A simle solution could be a pre-parser who translates words with
spaces to words without spaces.

3.2 General workings

Like mentioned in Chapter 2, the rules have a different level op complexity. When
a sentence is being parsed, the first thing to do is to find an entry rule to begin
traversing the semantic grammar. After that we try to find a terminal, assuming
that the terminal belongs to the entry rule of the grammar. This technique is
generally called template matching and rule fireing. The part of the sentence
from the entry to the terminal is being replaced by a general concept extended
by the remaining words of the sentence. This newly created sentence serves as
the beginning of a new sentence.

We try to look at one word at a time and try to find appropriate rules. When
we find an appropriate rule, we know what type of dialogue act we are dealing
with and we also know what rules might match. We can look at the rest of the
sentence, and try to extract more information from the remaining sentence. This
process can be repeated until no more information can be extracted. The figure
below shows the process of analysing the sentence.

‘what is the difference between tudelft and tueindhawen®

steps: _results:

i Look far the first entry paint request - what - information
4] Search the first terminal university <- name <- tudelft
3 is there o connection between [infarmation] and [university]? yes!

43 yes, infarmation-*lacation-runiversity-rname -rtudelft

)] ‘We are dealing with o request for information about o university

)] parse the remaining words information and tusindhowven

Fig. 4. First step: "What is the difference between TU Delft and TU Eindhoven’

Basically we look for parts within a sentence that have been defined in our
grammar. When we see an entry point and a terminal we can make a connection.
In the example above we can make a connection from a request for information
to a university with the name "TU Delft’. From the university concept we also
know what parts make up the university, so we can look for more information
in the remaining sentence to complete the university slot. When no information
about the university is present, we continue our search.

information and tueindhowven®

steps: _ results:

1 Look far the first entry paint campare -F and = list

4] Search the first terminal university {- name <-tuesindhowen
3 is there o connection between [list] and [university]? yes!

4y yes, list-rinfarmation-rinfarmation-*location-runiver sity-rname->tudelft

Y] ‘We are dealing with a request for information about o university
By The sentence is finsished now information list

Fig. 5. Second step: ’[information| and TU Eindhoven’

Now, we arrive at a new entry point. We leave the slots of the university
empty, and continue from the word ’and’ to conclude that we are now comparing
things. We find a new terminal ("TU Eindhoven’) and look for information to
complete the TU Eindhoven concept. However, at this point we see that there
are no more words in the original sentence, so we stop searching.

3.3 Prototype Algorithm

A visual representation of the algorithm is shown below.

On top you can see the part of the GUI that serves as the user input. The
user input is passed through the syntactic probabilistic CYK parser (more details
about the parser can be found in the paper of Adriaan de Jong). Based upon
the syntactic information the number of sentences is determined. Now all of
these sub sentences are being analysed by the semantic parser. The semantic
parser ‘consults the Domain Model’ and goes as deep as possible in parsing the
semantic meaning. When no more information can be found with the present
rules, the semantic analyser produces a frame-based output, which can be sent
to a dialogue manager.

3.4 Screenshots

The figure below contains information about the different aspects of the GUI.
The area marked with 1. is the parse tree generated by the CYK Parser (see
Adriaan de Jong [2008]). Area 2. contains the user input and a clear button. The
area marked by 3. is the output frame.

The figure below shows a screenshots of the ISSA parser in action.

Gl

|
|
|
what is the difference between tudelft and tueindhover I
|
1

Cukpuk Frame

i't&ompare'ﬂ

I [request]: [university]

|Clear | | === details of [universit

¥ sqntacﬁc infarmation

1

QUTPUT parse tree

1

SEMANTIC ANALYSER

eterrfqine the
number of sentences

]

CUTRUT subsentences

FRAME

Find initialFules
Find terminalRules
Find connecting concept

Create Slots

Fill in Slots

| Create new subsentence

s
DDGQ: what
auzb
VBZ:is

AT: the
MN: difference
PR
T0: between
4 hns
TP: paris
PR
CC:and
HP: london

Fig. 6. The algorithm

[request] |

[request]: [universicy]

> detals of [university]
[name]: 7

[adress]: 7

[Faculty]: ?

further analysis: information
st information

3 : Sermantic Parser output

=l .
|Cleart‘ 2: User input area

|._._._._.f._t.

SEMAMTIC GRAMMAR

initialFtules

|request] -= where linfarmation]

continuationFules

linfarmation] - |location];| person]

conceptRules

lperson] =¥ |name & age & hobby]

terminalFules

Lname] <= |person] <- bob;steven;bil

Fig. 7. The GUI and its main elements.

I Demo Real Time. nite Sentence Semantic Analyser :: by Steven Bos & Remco Janssen

Farse Tree Cutput Frame

as

>

Tauestior] |fqueston] | [queston] |
as [foct]: [course]

APPG: my > detals of [course]

R name [name]: bob
[teacher): ?
[code]: 7
s [day]: 7

HP: bob Further analysis: information what course do you think is good for
4G [request]: [course]

DDQ: what [name]: you
45 Further analysis: information information think is good For

4 [question]: information information think good for
RR; course further analysis: information information thirk information good for

v st information information Ehink information good for
w0 do

410
PPY: you
a0
R
WY: think,
a0
PRE
VEZ: s
ae
22 good
am -

a-vzh
VBZ: s

i

my name i bob nhat course do you think is goad for me

[ctear|

Fig. 8. The ISSA parser in action.

The output in the frame on the right should the kind of output a potential
Dialogue Manager could expect as an input. Based upon the information in the
output frame such a Dialogue Manager where to execute queries on Databases
and to select answers to reply to the user.

4 Results

Testing is important to get an idea of the functionality of our ISSA parser.
It is important to test how the ISSA parser behaves, performs and what it’s
capabilities are. Within this chapter we try to figure out how the parser performs,
what its limitations are and where improvements can be made.

4.1 Test procedure and Test set

To test the workings of the ISSA parser we use three scenarios. Although we
developed the parser for the '"EWI-project’ domain, we also state questions for
different domains as well as some known and unknown small talk (pragmatics).
The test is not bias-free nor is it complete to compare with other parsers. The
test set compromises of the following questions:

1. Questions that are in the FAQ
— The FAQ questions are stated in Chapter 2.
2. Questions that are in the FAQ but deviate one word

— I like Physics, what faculty would you recommend
— Hello computer, my name is Jan

— When does the first lecture start
3. Questions that are not in the FAQ

— I like to apply, how can I do that
— How are you doing
— Tell me more about that

4.2 Results

Scenario 1: Questions that are in the FAQ The first set comprises of
questions that are expected to be posed by potential users. The ISSA parser is
designed to handle these questions and therefore should be able to capture the
semantics of them. Aslo important to recoqnise is the type of dialogue act. The
figure below shows an example of the frame output for the sentence: 'my name
is Steven’.

Cukput Frame
[fact] |

[Fact]: [student]

--= details of [student]
[name]: steven

[nuriber]: ?

[email]: 7

[like]:

[hate]: 7

Further analysis: information
st information

Fig. 9. Output of the sentence: 'My name is steven.’

As can be seen from the example above, this sentence is parsed correctly by
the parser. Correct in this case means that the ISSA parser is able to determine
what kind of dialogue act we are dealing with and to categorize the sentence. It
determines that what is being said is a fact(statement). And the fact is that there
is a student whose name is Steven. This, of course is not true in general, but it
is true when looking at this sentence from our domain model perspective. Our
domain model assumes that the person that is speaking to 'EWT’ is a (potential)
student.

Our domain model is created around the questions within the FAQ test
set, there are some difficulties with the questions. Below is the output for the
sentences: "What courses are given at the tudelft?’ and 'I like mathematics, what
faculty would you recommend?’.

The first output frame ("What courses are given at the tudelft’) is lacking
some important information. It can be seen that we are looking for information
about a university called *tudelft’ but there is no indication about what we would

| lilee mathematics, what faculty

Whaot courses ore given at the TLDelft7 e o o e

Cukput Frame Cutput Frame
[request] | [request] !
[request]: [university] [fact]: [Faculky]
--= details of [university] --= details of [Faculky]
[name]: tudelft [name]: mathematics
[adress]: 7 fFurther analysis: person what Faculty would vou recommend
[Faculty]: # [request]: [person]
further analysis: information - details of [person]
5! information [name]: you
[age]: #
[hobbies]: #
Further analysis: person information recommend
s: person information recommend

Fig. 10. Output of two sentences that are not interpreted well

like to know from that specific university. Reason for this loss of information is
that the word ’courses’ is not in our semantic grammar. The singular version
‘course’ in fact is, but in our semantic grammar we only defined singular words
and there is no implementation that takes plural words into account. This causes
the sentence to be categorized by some kind of request for information about
the university.

The figure on the right misses some important information due to other
issues. The word ’faculty’ is a part of our semantic grammar. However, it does not
occur in the SEMI-SUSANNE based syntactic grammar. Therefore this sentence
cannot be parsed by our syntactic parser, and syntactic information about the
sentence is missing. To be able to parse at least something (like humans do
aswelll), we pass the complete sentence through our semantic parser. It now has
no information whatsoever about the strucure of a sentence. What we get is
one very long sentence, without recoqnising smaller sentences.. The first part
is classified as being a fact about the faculty mathematics. The remainder of
the sentence (in this case 'would you recommend’) is being classified as a fact.
In advance the idea would be that this kind of sentence would been split up.
Because our current semantic grammar is relatively small (compared to our
syntactic grammar) we can only process a limited number sentences when there
is no syntactic information. For example in an extensive grammar there could
be rules such as:

1. [person] — [name];[age];[hobbies];|likes];[dislikes]

2. [likes] — [course];[person];[city]
With such rules it might be possible to draw the conclusion that we are dealing
with a fact about a person, and a request for information.

Scenario 2: Questions that are in the FAQ but deviate one word Next
part of the test set, are sentences that look a lot like the sentences defined

within the FAQ but who contain a single word that is not defined within our
grammar. We already know that our grammar does not deal with singular and
plural differences and that our semantic grammar is relatively small. Both issues
can be resolved relatively easy by spending more time in developing the domain
model and its corresponding rules. However, it is impossible to include every
excisting word or self-invented word, so unknown words are bound to show up.
It is interesting for us to see what happens when a completely unknown word is
being used. Below is the output for sentences containing completely undefined
words.

Output Frame

[Fact] |

[Fact]: [Faculky]

--= details of [Faculty]

[name]: you

further analysis: person recommend
st person recommend

Fig. 11. Parsing an unknown word in our grammar

In this case, the sentence has no terminal word so it cannot find a complete
path through our semantic grammar rules. However, this issue is not inherent
to the way we parse the sentences. The only reason for this flaw is that for
practical reasons mentioned earlier, no syntactic part of speech rules have been
implemented in our domain model. So a semantic grammar, developed with the
knowledge of linguistic experts, might cause this problem to be solved. Unfortu-
nately we where not able to test this hypothesis due to time constraints. We can
imagine a rule that specifies for instance that when we see a fact, that the corre-
sponding information is always the complete :0’ (see SEMI-SUSANNE manual,
[5]) element following the fact.

Although, some information is lost when unknown words are being used, the
semantic parser can parse unknown words. Especially when they are combined,
the semantic analyser can parse acceptable results. Compare for example the two
sentences: I like physics, and I like the course physics. The first causes the parser
to lose essential information. While the second still produces acceptable results
because it now knows it is dealing with a course. Therefore, in the case where
information is lost, the dialogue manager can ask for additional information to
help the classification of the unknown term. Moreover, since the parser knows
what a course consists of, it can ask direct questions about the course to gain
additional information.

Scenario 3: Questions that are in not in the FAQ Finally we take a look
at sentences that are outside the scope of our domain model. So sentences that
have no direct relation to our model. First we observe the sentence: ‘I would like

to apply, how can i do that.” We have no rules for filing an application. Neither
do we have rules with regard to questions about certain procedures. The figures
below show the results for our frame:

Cukpuk Frame

[question] |[question] I[question]

[Fact]: like to apply how can do

further analysis: person like to apply how can person do
[question]: [person]

--= details of [person]

[name]: ¥

[age]: #

[hobbies]: 7

further analysis: person like to apply information do

s: person like ko apply information do

Fig. 12. Questions beyond the scope of our domain model

Even though we are dealing with concepts and questions that we did not
expect when we designed our domain model, it is clear that some basic concepts
indeed are being recognized. The result for the indicated sentences is that there is
a person that wants to apply (whatever that might mean) and the person wants
information about do (whatever ’do’ might mean). In case of an severely more
detailed semantic grammar, even more information might be recognized allowing
a dialogue manager to ask more specific questions about the unknown things in
the sentence. Basically we already see that it is a good idea to implement many
rules with different levels of abstraction (high level semantic mappings). When
a lot of details are known, those details should be captured by ’concrete’ rules.
On the opposite, when there is a lot of missing information, the ’abstract’ rules
should capture the most basic elements.

5 Recommendations

The ISSA parser and its (semantic) performance are in its most early stage.
Our approach to use specific high level syntactic input based on PCFG and
combine it with a semantic grammar has proven to be a working combination,
but how good it is compared to proven approaches, like pure semantic grammars
or the classical syntax-driven semantic analysis, has yet to be seen. In the short
development process of seven weeks we encountered several opportunities to
improve the functionality and performance of the parser. The following list of
ideas might prove to be useful for teams who like our approach and would like
continue working on it.

1. Improve meaning extraction The parser is dependent on two components;
the syntactic input and the semantic grammar. To improve the syntactic in-

put, we like to refer to the paper of Adriaan de Jong. To improve the semantic
part we suggest:

— Redo steps 1 to 3 of the classical semantic grammar development to
capture more domain data, which results in more rules (knowledge) in
the kernel grammar and allow more sentences to be recoqnised.

— The WordNet information can be interesting because a kernel grammar

simply cannot capture all the rules to parse a random sentence in a
complex domain. WordNet can solve this partly by providing a database
with synonyms. Even better; WordNet has semantical information on
several levels! see Chapter 16 (lexical semantics) of the book by Juraf-
sky[2000]. We havent worked it out because of other priorities with the
parser, but our raw idea was the following: First a sentence pops up with
one unknown word. The sentence can be only be parsed if this word is
known and this word does not effect the meaning of the whole sentence.
Second the parser looks up the word in WordNet or another thesaurus
and see if the word is a synonym for an existing word in the kernel gram-
mar. Third, the parser has to look up in a exception 'grammar’ to see
if the synonym might change the meaning of the sentence. If not then
the sentence can be parsed and the unknown word can be added to the
user grammar. A well developed exception 'grammar’ is crucial. One of
the most important rules of this grammar will be that a synonym is the
same part of speech as the existing word where it is a synonym of and
thus avoid choosing the wrong homonym. The WordNet feature we spoke
about here will probably only work for single unknown words (the excep-
tion ’grammar’ would become to big otherwise, because two words are
more likely to change the meaning of a sentence). Nevertheless it makes
the parser not hopeless when it finds an unknown word. This automatic
feature is not the same as the (user-interupting) learning engine feature
mentioned below.
On a side note: Note that we didnt do anything with the fact that Word-
Net contains semantical information on several levels and thus based on
a WordNet entry more information then in our kernel grammar can be
gathered see page 619 of Jurafsky [in 2000].

— The shallow analysis of the syntactic input should be developed further.
Currently it only uses few, simple rules. But when more and more com-
plex rules are added, the syntactic analysis could prove to be even more
valuable to the semantic grammar.

2. Improve functionality The parser was hastly build and only minimal func-
tionality was implemented. Great opportunities are:

— Usability. Develop a GUI that is friendly out of the box.

— Option to see n-best trees for debug reasons, with n to be chosen by user.

— Extend parser to also look in user grammar. The user grammar contains
new semantic mappings (stage 4 of the classical semantic grammar de-
velopment[3]). Of course a learning engine who detects similarities and
verifies this with a developer or end-user must also be developed. This

semi-automatic system may be similar to the GSG engine [4]. A full au-
tomatic learning engine is also possible. Oppertunities here are Hidden
Understanding Models (see examples, [3]). The learning engine could be

a subsytem of the "EWI dialogue system’.
3. Improve performance and code enhancement Although output is gen-

erated real-time, the code is not optimized. Optimized code is especially use-
full when the parser is part of the bigger system EWI-system, where maybe
multiple sentences are given as input.

4. Collaborate with linguistic experts Our work has been made from a com-
puter scientist perspective, inspired on the research of Jurafsky and Gavalda.
The results mentioned should also be verified by linguistic experts.

6 Conclusions

Meaning extraction with semantic grammars and syntactical information works
for our small data collection. It is however, a very tedious job to find enough rules
to be able to cover the entire 'EWI-project’ domain. Already we faced problems
with overhead. A structured way of working is absolut neccesary to deal with the
grammar complexity. Validation, verification and evaluation (=testing) are not
mentioned in the classic SG development approach, but these phases inevitably
show up before or after each classical step in order to produce quality rules.
They consume major chunks of time when developing a SG.

The ISSA parser and its way of converting SG and syntactic input is really
in its earliest stage. The raw power of combining the two is by far not exploited,
especially using parts of speech. Collaboration with a linguistic expert could be
a great help to improve this syntactical part.

The robustness of the parser was tested with three scenario’s: sentences of
the data collection, sentences which deviate one word and which deviate almost
in total. Results show that the parser can handle most of the sentences of sce-
nario 1. The sentence it couldnt handle was because of the absence of a plurar
form of the word. This again emphasizes the need for a larger SG. The second
scenario could also be handled very well, depending on the importance of a word
in a sentence (a noun or verb is often more important than a adjective). We rec-
ommend using the WordNet extension to at least recoqnise the word on a word
level and have a chance that it is a synonym for a recognised word. Another
possibility would be to develop a learning engine where rules are learned au-
tomatically (by means of Hidden Understanding Models) or semi-automatically
(by means of automatic rule inference and verification by humans). The last
scenario is especially interesting. Results show that the parser can extract some
knowledge even with a small grammar. We expect results in this category to
improve automatically when the grammar is extended, but cannot say anything
on how usefull it will be.

As a final remark: the working of the ISSA parser depends on the SEMI-
SUSANNE PCFG. When a word is not recognised by the syntactic parser it
provides an empty syntax tree. The semantic parser then treats the sentence as
one and is unable to detect multiple sentences in one.

Acknowledgements

This project is part of the 'EWI multimodal conversational agent’ project. The
full scope of the project includes speech recoqnition, natural language under-
standing and dialogue management. For the master course 'Realtime AI and
Speech Recoqgnition’ we choose to work on the NLU domain. Together with the
syntactical parser of Adriaan de Jong, the ISSA parser is able to cover this do-
main in its greatest simplicity. We appreciate the collaboration with Adriaan.
We also like to thank the initiator of the EWI project and our mentor dr. ir.
Pascal Wiggers. Many thanks also go to the founders of the GSG approach; re-
seachers Marsal Gavalda and Alex Weibel. Their work was highly inspirational
for us.

As a final note: this paper only described our research on the subject of
semantical parsers and extracting information. Ethical issues, which inevitably
will rise when developing the applications mentioned in the introduction, deserve
a paper of their own.

References

1. Jurafsky, D., Martin, J.H. In: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2000) chapter 15

2. Jurafsky, D., Martin, J.H. In: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2000) 546

3. Gavalda, M., Waibel, A.: Growing semantic grammars. In: Proceedings of the
36th annual meeting on Association for Computational Linguistics, Morristown,
NJ, USA, Association for Computational Linguistics (1998) 451-456

4. Gavalda, M.: Epiphenomenal grammar acquisition with gsg. In: ANLP/NAACL
2000 Workshop on Conversational systems, Morristown, NJ, USA, Association for
Computational Linguistics (2000) 36-41

5. Sampson, G.: Semi-susanne corpus. http://www.grsampson.net/SemiSueDoc.html
(2000)

